Abstract:
A flowable hardenable composition comprising from 10 to 95 percent by volume of shaped composite particles dispersed in a hardenable binder precursor. The shaped composite particles comprise thermal filler particles having an aspect ratio of at least 1.5 retained in a binder matrix. After hardening, a thermally conductive composition is obtained. An electronic heat sink assembly comprises an electronic component, a heat sink, and the thermally conductive composition sandwiched therebetween.
Abstract:
A magnetizable abrasive particle comprises a ceramic body having an outer surface and a magnetizable layer disposed on a portion, but not the entirety, of the outer surface. The ceramic body comprises a platelet having two opposed major facets connected to each other by a plurality of side facets. The magnetizable layer completely covers one of the two opposed major facets, and the magnetizable layer has a magnetic dipole oriented perpendicular or parallel to the facet which it completely covers. A plurality of the magnetizable abrasive particles, and abrasive articles including them are also disclosed. Methods of making the foregoing are also disclosed.
Abstract:
A curable composition comprises at least one cyclic olefin capable of undergoing ring opening metathesis polymerization; at least one ring opening metathesis polymerization catalyst or precursor catalyst thereof; abrasive particles having surface hydroxyl groups; and a difunctional coupling agent represented by the structure Z-X-Z (I). Each Z independently represents a group that is chemically reactive with at least one of the surface hydroxyl groups of one of the abrasive particles thereby forming at least one covalent bond. X represents a divalent organic linking group have a number average molecular weight of 500 to 10000 grams per mole.
Abstract:
Nonwoven abrasive articles comprise a nonwoven abrasive member having an overlayer composition comprising a fatty acid metal salt disposed thereon adjacent to a working surface. The nonwoven abrasive member comprises abrasive particles adhered to a fiber web by a binder. The abrasive particles may be exposed and/or the nonwoven abrasive member may have suitable frictional properties. Methods of making the same are also disclosed.
Abstract:
An abrasive article includes backing material, binder comprising an anionic water solubilizing material provided on at least a portion of the backing material and abrasive particles provided on at least a portion of the backing material. A method of making such an abrasive article comprises the steps of providing a backing material, applying a first binder containing an anionic water solubilizing material to the backing material, and applying abrasive particles to the backing material.
Abstract:
A method of making magnetizable abrasive particles includes providing a slurry layer disposed on a substrate. The slurry layer has an exposed surface and comprises magnetic particles, a binder precursor, and a liquid vehicle. Abrasive particles are electrostatically contacted with the slurry layer such that they are aligned substantially oriented perpendicular to the surface of the substrate, and are partially embedded within the slurry layer. The liquid vehicle is at least partially removed from the slurry layer and the binder precursor is converted into a binder to provide a magnetizable layer comprising the magnetic particles partially embedded in the binder. The magnetizable abrasive particles ae separated from the releasable substrate. Each magnetizable abrasive particle respectively comprises a portion of the magnetizable layer disposed on a portion of an abrasive particle.
Abstract:
An abrasive comprising abrasive particles and an adhesive matrix is provided, with the abrasive particles being distributed in the adhesive matrix, wherein the abrasive particles comprise aluminum hydroxide abrasive particles, and the adhesive matrix comprises a triacrylate, a diacrylate and an initiator. The abrasive article prepared using the abrasive of the present invention has proper wear resistance and can be used to a clean LCD panel surface without scratching the ITO coating on an LCD panel surface.
Abstract:
An abrasive article is disclosed. The abrasive article has a backing substrate. The abrasive article also has a laminate joined to the backing substrate. The laminate comprises a hot melt polymer. The abrasive article also has a cured resin composition joined to the laminate opposite the backing substrate. The abrasive article also has abrasive particles joined to the cured resin composition.
Abstract:
A method of making a mesh abrasive product comprises sequentially: 1) providing a production tool having a mold surface defining a plurality of shaped cavities and filling at least some of the shaped cavities with an abrasive composite precursor slurry, wherein the abrasive composite precursor slurry comprises abrasive particles dispersed within a curable binder precursor; 2) contacting the mold surface with an open mesh backing comprising interwoven threads defining openings, and having first and second opposed major sides; 3) ultrasonically vibrating the abrasive composite precursor slurry; 4) curing the curable binder precursor by exposing it to sufficient actinic electromagnetic radiation to provide isolated shaped abrasive composites contacting and secured to the first major side of the open mesh backing; and 5) separating the mesh abrasive product from the production tool. An open mesh abrasive product preparable by the method is also disclosed.
Abstract:
An abrasive article comprises abrasive particles secured to a substrate by at least one binder material. The at least one binder material comprises a cured reaction product of components comprising: a) at least one phenolic resin; and b) an aqueous dispersion of at least one polyurethane, wherein, based on the total solids weight of components a) and b), the components comprise 56 to 91 percent by weight of component a) and 44 to 9 percent by weight of component b). Methods of making and using the abrasive articles are also disclosed.