Abstract:
An auscultation device having a chest piece with a sound output aperture in fluid communication with a diaphragm on a bottom surface of the chest piece. A digital stethoscope component with a sound input aperture and a connector fluidly connecting the sound output aperture to the sound input aperture. The connector is designed such that the auscultation device is free standing on a horizontal surface.
Abstract:
A stethoscope includes a flexible chest piece including a top surface, a bottom surface, a side surface defining a slope between the top surface and the bottom surface, and a groove extending along an inner circumference of the chest piece. A diaphragm is positioned within the groove.
Abstract:
In one aspect, an auscultation system utilizes a digital filter to obtain a sound profile similar to a sound profile of a mechanical stethoscope. In another aspect, an auscultation system utilizes a digital filter to provide diagnostic filtering. In yet another aspect, an auscultation system utilizes a digital filter to compensate for a characteristic frequency response of a headset.
Abstract:
Medical diagnostic devices or components thereof are described that comprise a microstructured surface that comprises peak structures and adjacent valleys wherein the valleys have a maximum width ranging from 1 to 1000 microns and the peak structures. In some embodiments (e.g. for improved cleanability) the peak structures of the microstructured surface have a side wall angle of greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-comers elements. The microstmctured surface of the medical diagnostic device typically comes in contact with multiple patients during normal use of the device, such as a stethoscope diaphragm. The microstmctured surface exhibits better microorganism (e.g. bacteria) removal when cleaned and/or provides a reduction in microbial touch transfer. Also described are methods of making and methods of use.
Abstract:
Layers of siloxane tackifying resins that do not contain siloxane fluids, gums or polymers act as adhesion promotion agents. Articles include a substrate layer, a non-tacky siloxane tackifying resin adhesion promotion layer disposed on the surface of the substrate layer, and a crosslinked siloxane layer in contact with the adhesion promotion layer. The crosslinked siloxane layer is not an adhesive layer. The adhesion of the crosslinked siloxane layer to the substrate is greater than the adhesion without the non-tacky siloxane tackifying adhesion promotion layer.
Abstract:
Aspects of the present disclosure relate to an ergonomic chestpiece for a stethoscope. The chestpiece includes a bottom surface which is generally planar and adapted to be placed near the patient for receiving auscultatory sounds. The chestpiece includes a raised center portion defining first and second lateral indented gripping surfaces, the raised center portion having a top surface opposite the bottom surface. The chestpiece includes a stem portion extending distally from the raised center portion. The first lateral indented gripping surface is defined by a first wall comprising a first concave surface arcuate about a first axis and the second lateral indented gripping surface is defined by a second wall comprising a second concave surface arcuate about a second axis. The first axis and the second axis form a V-shape comprising an apex oriented in a direction of the stem portion.
Abstract:
A modular stethoscope includes a first module including a chestpiece and a first tubing disposed in fluid communication with and connected to the chestpiece. The chestpiece is configured to transmit acoustic waves through the first tubing. The modular stethoscope further includes a second module detachably connected to the first module. The second module includes a second tubing and a headset disposed in fluid communication with the second tubing. The modular stethoscope further includes a tube connector fluidly disposed between the first tubing of the first module and the second tubing of the second module. The tube connector is detachably connected to the first tubing of the first module. The tube connector includes a first part, a second part, and a quick coupling member configured to detachably and sealably connect the first part to the second part to acoustically couple the first tubing to the second tubing.
Abstract:
Polymeric tubing containing extractable component(s) for use in medical articles include a tube and a vapor-deposited coating of a barrier polymer covering at least a portion of the tube. The barrier polymer is derived from at least one ethylenically unsaturated monomer. The vapor-deposited polymer coating reduces the extraction of extractable component(s) from the tube. The barrier polymer is parylene or a copolymer of parylene. The polymer coated tubing can be used in stethoscopes.
Abstract:
Medical diagnostic devices or components thereof are described that comprise a microstructured surface that comprises peak structures and adjacent valleys wherein the valleys have a maximum width ranging from 1 to 1000 microns and the peak structures. In some embodiments (e.g. for improved cleanability) the peak structures of the microstructured surface have a side wall angle of greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-comers elements. The microstructured surface of the medical diagnostic device typically comes in contact with multiple patients during normal use of the device, such as a stethoscope diaphragm. The microstructured surface exhibits better microorganism (e.g. bacteria) removal when cleaned and/or provides a reduction in microbial touch transfer. Also described are methods of making and methods of use.
Abstract:
An electronic stethoscope includes a housing configured for hand-held manipulation, a transducer supported by the housing and configured to sense auscultation signals at a first location, and a headset coupled to the housing and configured to deliver audio corresponding to the auscultation signals through earpieces on the headset. The electronic stethoscope further includes a processor disposed in the housing and configured to convert the auscultation signals to first digital signals representative of the auscultation signals and to wirelessly transmit the first digital signals from the electronic stethoscope via a secure digital network to a second location such that the audio corresponding to the auscultation signals is provided to headsets of one or more additional electronic stethoscopes at the second location in substantial real time with the sensing of the auscultation sounds at the first location.