Abstract:
A skew mirror is an optical reflective device, such as a volume holographic optical element, whose reflective axis forms an angle (the skew angle) with the surface normal. A skew illuminator is a skew mirror that expands a narrow beam into a wide beam without changing the angular bandwidth of the illumination. Because the skew angle can form a relatively large angle with the surface normal (e.g., about 45), a skew illuminator can be fairly compact, making it suitable for directing light onto a spatial light modulator (SLM) in a small package. In some cases, the skew illuminator is formed as a waveguide, with a holographic layer sandwiched between a pair of substrates. A grating structure in the holographic core diffracts light out of the waveguide and, e.g., onto the active area of an SLM, which modulates the incident light and either transmits it or reflects it back through the waveguided skew illuminator.
Abstract:
Methods and devices for coherent holographic data channel techniques are presented. Coherent techniques for data detection generally include homodyne and heterodyne detection. Techniques for quadrature homodyne detection, resampling quadrature homodyne detection, n-rature homodyne detection, and spatial wavefront demodulation are presented. Coherent detection techniques in turn enable coherent channel modulation techniques such as phase modulation (including binary phase shift keying, or BPSK; phase quadrature holographic multiplexing, or QPSK; and quadrature amplitude modulation, or QAM). Coherent detection may also enable or improve the performance of other channel techniques such as partial response maximum likelihood (PRML), the various classes of extended PRML, and of noise-predictive maximum likelihood (NPML) detection.
Abstract:
A holographic skew mirror has a reflective axis, or skew axis, that can be tilted with respect to its surface normal. Tilting the skew axis in two dimensions with respect to the surface normal expands the holographic skew mirror's possible field of view, e.g., to 60 or more. These additional angles can be accessed using an out-of-plane writing geometry with matched total internal grazing extension rotation (TIGER) prisms.
Abstract:
A skew mirror is an optical reflective device whose reflective axis forms a non-zero angle with the surface normal. A spatially varying skew mirror is a skew mirror whose reflective axes vary as a function of lateral position. If a spatially varying skew mirror was subdivided into many pieces, some or all of the many pieces could have a reflective axis that points in a different direction. In some variations, a spatially varying skew mirror can act as a focusing mirror that focuses incident light. A spatially varying skew mirror can be made by recording interference patterns between a phase-modulated writing beam and another writing beam or by recording interference patterns between planar wavefronts in a curved holographic recording medium that is later bent or warped.