Abstract:
Systems and methods for making ceramic powders configured with consistent, tailored characteristics and/or properties are provided herein. In some embodiments a system for making ceramic powders, includes: a reactor body having a reaction chamber and configured with a heat source to provide a hot zone along the reaction chamber; a sweep gas inlet configured to direct a sweep gas into the reaction chamber and a sweep gas outlet configured to direct an exhaust gas from the reaction chamber, a plurality of containers, within the reactor body, configured to retain at least one preform, wherein each container is configured to permit the sweep gas to flow therethrough, wherein the preform is configured to permit the sweep gas to flow there through, such that the precursor mixture is reacted in the hot zone to form a ceramic powder product having uniform properties.
Abstract:
In some embodiments, a ceramic armor product includes: a ceramic powder; an at least one metal-based additive; and a density of 4.3-4.7 g/cc, wherein the ceramic armor product is substantially lacking grain orientation. In some embodiments, a ceramic armor product, includes: a ceramic powder, wherein the ceramic powder is titanium diboride (TiB2); an at least one metal-based additive, wherein the at least one metal based additive comprises elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77; and a density of 4.3-4.7 g/cc, wherein the ceramic armor product is substantially lacking grain orientation.
Abstract:
Systems and methods for making ceramic powders are provided. In some embodiments, a method for forming a ceramic powder includes: adding a sufficient amount of additives to a plurality of reagents to form a precursor mixture so that when the precursor mixture is carbothermically reacted the precursor mixture forms a ceramic powder, wherein the additive includes at least one of: an oxide, a salt, a pure metal or an alloy of elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77 and combinations thereof; and carbothermically reacting the precursor mixture to form a ceramic powder, wherein the ceramic powder comprises: a) a morphology selected from the group consisting of irregular, equiaxed, plate-like, and combinations thereof, and b) a particle size distribution selected from the group consisting of fine, intermediate, coarse, and combinations thereof.