Abstract:
Aspects of the subject disclosure may include, for example, a transmission device that includes at least one transceiver configured to modulate data to generate a plurality of first electromagnetic waves. A plurality of couplers are configured to couple at least a portion of the plurality of first electromagnetic waves to a transmission medium, wherein the plurality of couplers generate a plurality of mode division multiplexed second electromagnetic waves that propagate along the outer surface of the transmission medium. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a waveguide including a plurality of devices that facilitate generating scattered electromagnetic waves from electromagnetic waves propagating on a surface of a transmission medium. The scattered electromagnetic waves combine to generate a wireless signal having a directionality based on a separation between plurality of devices and a wavelength of the electromagnetic waves. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a coupling device including a receiving portion that receives a radio frequency signal conveying data from a transmitting device. A magnetic coupler magnetically couples the radio frequency signal to a transmission medium as a guided electromagnetic wave that is bound by an outer surface of the transmission medium. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission device that includes a transmitter that generates a first electromagnetic wave to convey data. A coupler couples the first electromagnetic wave to a single wire transmission medium having an outer surface, to forming a second electromagnetic wave that is guided to propagate along the outer surface of the single wire transmission medium via at least one guided wave mode that includes an asymmetric or non-fundamental mode having a lower cutoff frequency. A carrier frequency of the second electromagnetic wave is selected to be within a limited range of the lower cutoff frequency, so that a majority of the electric field is concentrated within a distance from the outer surface that is less than half the largest cross sectional dimension of the single wire transmission medium, and/or to reduce propagation loss. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a coupling device including a first antenna that radiates a first RF signal conveying first data; and a second antenna that radiates a second RF signal conveying the first data from the at least one transmitting device. The first RF signal and second RF signal form a combined RF signal that is bound by an outer surface of a transmission medium to propagate as a guided electromagnetic wave substantially in a single longitudinal direction along the transmission medium. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission device that includes a first coupler that guides a first electromagnetic wave to a first junction to form a second electromagnetic wave that is guided to propagate along the outer surface of the transmission medium via one or more guided-wave modes. These mode(s) have an envelope that varies as a function of angular deviation and/or longitudinal displacement. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system for modulating a first electrical signal to generate first modulated electromagnetic waves, and transmitting the first modulated electromagnetic waves on a waveguide located in proximity to a transmission medium. In one embodiment, the first electromagnetic waves can induce second electromagnetic waves that propagate on an outer surface of the transmission medium. The second electromagnetic waves can have a first spectral range that is divided into, contains or otherwise includes a first control channel and a first plurality of bands. Other embodiments are disclosed.