Abstract:
Systems and methods for utilizing inter-microphone level differences to attenuate noise and enhance speech are provided. In exemplary embodiments, energy estimates of acoustic signals received by a primary microphone and a secondary microphone are determined in order to determine an inter-microphone level difference (ILD). This ILD in combination with a noise estimate based only on a primary microphone acoustic signal allow a filter estimate to be derived. In some embodiments, the derived filter estimate may be smoothed. The filter estimate is then applied to the acoustic signal from the primary microphone to generate a speech estimate.
Abstract:
Audio signal bandwidth extension is performed on a narrow bandwidth signal received from a remote source over the audio communication network. The narrow band signal bandwidth is extended such that the bandwidth is greater than that of the audio communication network. The signal is extended by synthesizing an audio signal having spectral values within an extended bandwidth from synthetic components. The synthetic components may be generated using parameters derived from original narrowband audio signal. The audio signal may be synthesized in the form of an excitation signal and vocal tract envelope. The excitation signal and vocal tract may be extended independently. In various embodiments, excitation components may be derived from constrained synthesis using a constraint filter with nulls in regions where the extension is desired.
Abstract:
Systems and methods for utilizing inter-microphone level differences (ILD) to attenuate noise and enhance speech are provided. In exemplary embodiments, primary and secondary acoustic signals are received by omni-directional microphones, and converted into primary and secondary electric signals. A differential microphone array module processes the electric signals to determine a cardioid primary signal and a cardioid secondary signal. The cardioid signals are filtered through a frequency analysis module which takes the signals and mimics a cochlea implementation (i.e., cochlear domain). Energy levels of the signals are then computed, and the results are processed by an ILD module using a non-linear combination to obtain the ILD. In exemplary embodiments, the non-linear combination comprises dividing the energy level associated with the primary microphone by the energy level associated with the secondary microphone. The ILD is utilized by a noise reduction system to enhance the speech of the primary acoustic signal.