Abstract:
A connector system including a first connector configured to electrically and/or optically connect to a second connector. The first connector includes a first connector body configured to engage with the second connector; a first housing remotely located from the first connector body; a first connecting line including at least one of an electrical control line and an optical fiber connecting the first housing to the first connector body; a first main control line including at least one of an electrical control line and an optical fiber connected to the first housing; and, a first pressure isolator associated with the first housing, the first pressure isolator isolating pressure within the first main control line from pressure within the first connecting line and the first connector body. The first housing and the first connecting line are interposed between the first main control line and the first connector body.
Abstract:
An axial and rotational alignment system including a casing string having an axial orientation feature and a rotational orientation feature; and a tubing string having an axial and rotational orientation assembly thereon, the assembly including a rotational alignment subassembly having a selectively actuable member that is selectively engagable with the rotational orientation feature.
Abstract:
A pressurized seat check valve including a flexible frustoconical seat having a back surface configured for exposure to upstream pressure, a closure member in sealable communication with the seat, the closure member being biased into contact with the seat and, in use, the seat being deflected toward the closure member by the exposure to upstream pressure.
Abstract:
A method and apparatus for determining a pressure in an annulus between an inner casing and an outer casing. An acoustic transducer is disposed within the casing at a selected depth within the inner casing and is configured to generate an acoustic pulse and receive a reflection of the acoustic pulse from the inner casing. A time of flight is measured of the acoustic pulse to the inner surface of the inner casing. An inner diameter of the inner casing is determined from the time of flight. The pressure in the annulus is determined from the inner diameter. A processor can be used to measure time and determine inner diameter and annulus pressure.