Abstract:
A system and method for reconstructing an incomplete data subset in seismic exploration is disclosed. The method includes receiving data based on a first emitted signal as a complete dataset. The first emitted signal is a range of frequencies between a starting frequency and a stopping frequency. The method further includes receiving data based on a second emitted signal as an incomplete data subset. The second emitted signal is a subset of the frequencies used by the first emitted signal between the starting frequency and the stopping frequency. The method further includes creating a reconstructed dataset by supplementing the incomplete data subset with the complete dataset and generating a seismic image based on the reconstructed dataset.
Abstract:
Method and device for generating an induced source shot point gather. The method includes receiving (400) seismic data at least partially generated by an unintentional seismic source; calculating (406) plural reconstructed receiver traces (RG i ) based on pairing traces from the seismic data; and generating the induced source shot point gather based on the plural reconstructed receiver traces (RG i ).
Abstract:
A system and method for correcting data after component replacement in continuous seismic exploration disclosed. The method includes calculating a first matching operator after a first component is replaced with a second component. The first matching operator is based on a first seismic trace recorded before replacement of the first component and a second seismic trace recorded after replacement of the first component. The method further includes correcting the second seismic trace by applying the first matching operator to the second seismic trace.
Abstract:
A system and method for generating simultaneous plural frequencies in seismic exploration is disclosed. The method includes configuring a seismic source to emit a seismic signal that includes multiple frequencies emitted substantially simultaneously. The method additionally includes identifying a plurality of frequencies to include in the seismic signal and determining an amplitude of the seismic signal. The method further includes obtaining a seismic dataset corresponding to the seismic signal emitted by the seismic source and creating a seismic image of a subsurface of a seismic survey area.
Abstract:
The present disclosure includes a method for reducing noise in seismic data using a frequency dependent calendar filter. The method for reducing noise in input seismic trace data includes obtaining a plurality of input seismic trace data, the plurality of input seismic trace data including a plurality of controlled signals and a plurality of uncontrolled signals, identifying a frequency content of the plurality of uncontrolled signals, and selecting a frequency dependent calendar filter based on the frequency content of the plurality of uncontrolled signals. The method further includes applying the frequency dependent calendar filter to the plurality of input seismic data to generate a plurality of output noise-reduced seismic traces. The present disclosure also includes associated systems and apparatuses.
Abstract:
The present disclosure includes a method for monitoring a subsurface formation including disposing an antenna in a horizontal wellbore, the antenna including a plurality of piezoelectric modules. A voltage signal is applied to at least one of the piezoelectric modules to cause the at least one piezoelectric modules to emit seismic energy into the subsurface formation. A resulting signal is received at a receiver. A property of the subsurface formation is determined based, at least in part, on the resulting signal.
Abstract:
A modified velocity model different from an initial velocity model is determined for migrating a vintage of 4D seismic data. The modified velocity model minimizes differences between a reference vintage migrated using the initial velocity model and the vintage migrated using the modified velocity model.
Abstract:
Systems and methods for deghosting seismic data using migration of sparse arrays are disclosed. The methods may include obtaining input seismic data, the input seismic data including a first set of seismic data recorded by a first set of seismic receivers located at a first depth, and a second set of seismic data recorded by a second set of seismic receivers located at a second depth. The method may further include migrating the first set of seismic data to an image grid, and migrating the second set of seismic data to the image grid. Additionally, the method may further include calculating a ghost wave based on the first and second sets of migrated seismic data, and deghosting the first set of migrated seismic data by removing the ghost wave.
Abstract:
Systems and methods for wireless data acquisition in seismic monitoring systems are disclosed. The method includes obtaining a signal table for an emitted seismic signal, receiving seismic signal data from a receiver configured to transform seismic signals into seismic signal data, and storing the seismic signal data on a storage system. The method also includes determining a time span for the seismic signal data and generating a reduced data set based on the seismic signal data, the signal table, and the time span.
Abstract:
Systems and methods for performing seismic migration using an indexed matrix are disclosed. The method includes receiving a seismic trace from a receiver, determining a discretized position of the receiver, and determining a discretized position of a seismic source. The method also includes determining a set of migration indexes based on a matrix, the discretized position of the receiver, and the discretized position of the seismic source, and determining a set of amplitude weights based on the matrix, the discretized position of the receiver, and the discretized position of the seismic source. The method further includes migrating the seismic trace based on the set of migration indexes and the set of amplitude weights.