Abstract:
A system and method for reducing noise in a seismic vibratory source is disclosed. The method includes generating an initial pilot signal for the seismic vibratory source, receiving a source signature based on the initial pilot signal, estimating a noise component of the source signature based on the source signature and the initial pilot signal, generating an anti-noise correction for the initial pilot signal based on the noise component of the source signature, and computing a modified pilot signal based on the initial pilot signal and the anti-noise correction.
Abstract:
Methods and systems for separating seismic data acquired using a plurality of substantially simultaneously fired sources are described. The sources use sweep sequences having low cross correlation levels to generate seismic waves, and their source signatures are determined. Using the source signatures, the wave fields associated with each of the sources are extracted from the seismic data by, for example, performing a time domain deconvolution.
Abstract:
A method for attenuating noise in seismic data signals is described wherein seismic signals are transmitted using a pseudo-random frequency sweep signal. Noise is then attenuated from the resulting, acquired seismic data on pre-phase subtraction basis, e.g., before correlating or de-convolving the acquired seismic data. In this way, repetitions associated with, for example, diversity stacking techniques can be avoided.
Abstract:
Methods for seismic exploration of a subsurface formation increase productivity by simultaneously actuating closely located vibratory sources. Individual vibrations generated by different sources actuated simultaneously are encoded to enable separation of seismic data corresponding to each of the individual vibrations.