Abstract:
A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit uses the reference and/or error microphone, optionally along with a microphone provided for capturing near-end speech, to determine whether one of the reference or error microphones is obstructed by comparing their received signal content and takes action to avoid generation of erroneous anti-noise.
Abstract:
In accordance with systems and methods of the present disclosure, a method may include receiving an error microphone signal indicative of an acoustic output of a transducer and ambient audio sounds at the acoustic output of the transducer. The method may also include generating an anti-noise signal to reduce the presence of the ambient audio sounds at the acoustic output of the transducer based at least on the error microphone signal. The method may further include generating an equalized source audio signal from a source audio signal by adapting, based at least on the error microphone signal, a response of the adaptive playback equalization system to minimize a difference between the source audio signal and the error microphone signal. The method may additionally include combining the anti-noise signal with the equalized source audio signal to generate an audio signal provided to the transducer.
Abstract:
An integrated circuit for implementing at least a portion of a personal audio device may include an output and a processing circuit. The output may provide an output signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer. The processing circuit may implement an adaptive noise cancellation system that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal.
Abstract:
A personal audio device, such as a wireless telephone, generates an anti-noise signal from an error microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. The error microphone is also provided proximate the speaker to provide an error signal indicative of the effectiveness of the noise cancellation. A secondary path estimating adaptive filter is used to estimate the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Noise bursts are injected intermittently and the adaptation of the secondary path estimating adaptive filter controlled, so that the secondary path estimate can be maintained irrespective of the presence and amplitude of the source audio.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal that measures the ambient audio and an error microphone signal that measures the output of an output transducer plus any ambient audio at that location and injects the anti-noise signal at the transducer output to cause cancellation of ambient audio sounds. A processing circuit uses the reference and error microphone to generate the anti- noise signal, which can be generated by an adaptive filter operating at a multiple of the ANC coefficient update rate. Downlink audio can be combined with the high data rate anti-noise signal by interpolation. High-pass filters in the control paths reduce DC offset in the ANC circuits, and ANC coefficient adaptation can be halted when downlink audio is not detected.
Abstract:
A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancelation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
Abstract:
A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit that performs the adaptive noise canceling (ANC) function also detects frequency-dependent characteristics in and/or direction of the ambient sounds and alters adaptation of the noise canceling circuit in response to the detection.
Abstract:
A personal audio device including earspeakers, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each earspeaker from at least one microphone signal that measures the ambient audio, and the anti-noise signals are combined with source audio to provide outputs for the earspeakers. The anti-noise signals cause cancellation of ambient audio sounds at the respective earspeakers. A processing circuit uses the microphone signal(s) to generate the anti-noise signals, which can be generated by adaptive filters. The processing circuit controls adaptation of the adaptive filters such that when an event requiring action on the adaptation of one of the adaptive filters is detected, action is taken on the other one of the adaptive filters. Another feature of the ANC system uses microphone signals provided at both of the earspeakers to perform processing on a voice microphone signal that receives speech of the user.
Abstract:
A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. A processing circuit monitors a level of the anti-noise signal, determines that the anti-noise signal may cause damage to the transducer and adjusts the generation of the anti-noise signal such that damage to the transducer is prevented.
Abstract:
A personal audio device includes a sidetone circuit with one or more adjustable coefficients that generates a sidetone signal from the output of a first microphone. The sidetone circuit has one or more adjustable coefficients for altering the relationship between the first microphone signal and the sidetone signal. The personal audio device also includes a transducer for reproducing playback audio and the sidetone signal at an ear of a listener and a second microphone for measuring the output of the transducer as delivered to the ear of the listener. The sidetone circuit includes a calibration circuit for estimating a response of the second microphone to the sidetone signal and adjusting the coefficient of the sidetone circuit according to the estimated response.