Abstract:
A bone conduction device, comprising: a sound input element configured to receive an acoustic sound signal; an electronics module configured generate an electrical signal representing said acoustic sound signal; and a transducer configured to generate motion of a mass component based on said electrical signal so as to generate one or more mechanical forces resulting in one or more of motion and vibration of a recipient's skull thereby causing sound perception, wherein one or more of the size and shape of said mass component is selectable at least partially based on a desired mechanical force to be generated by said transducer.
Abstract:
A bone conduction device, comprising: a sound input element configured to receive an acoustic sound signal; an electronics module configured generate an electrical signal representing said acoustic sound signal; and a transducer, comprising a mass configured to move in a rotational direction, configured to generate a vibrational force in a tangential direction with respect to a recipient's bone.
Abstract:
A fixation system tor a bone conduction device is disclosed. An abutment is coupled to a bone anchor such that vibrations applied to the abutment pass into the bone anchor. The abutment defines a conduction path to the bone anchor such that vibrations applied to the abutment are transferred to the bone anchor. The abutment comprises a plurality of sbearing elements disposed adjacent the bone anchor, wherein the shearing elements from part of the conduction path. The fixation system also comprises a virbratoty coupler extending from the bone conduction device, comprising a second conduction surface and a magnet, wherein the magnet attracts to the abutment so as to couple the second conduction surface to the abutment, thereby enabling vibrations to pass through the conduction path. The shearing elements are configured to slide laterally in response to tangential forces incident upon the abutment.
Abstract:
An impleanted-transducer bone conduction device for enhancing the hearing of a recipient, comprising: a sound input element configured to receive an acoustic sound signal; an electronics module configured generate an electrical signal representing said acoustic sound signal; a transducer implanted within the recipient and mechanically coupled to the recipient's bone, said implanted transducer configured to generate mechanical forces representing said electrical signal for deliver to the recipient's skull.
Abstract:
A bone conduction device for enhancing the hearing of a recipient, comprising a sound input element configured to receive an acoustic sound signal and an electronics module configured generate an electrical signal representing the acoustic sound signal. The device further comprises an piezoelectric transducer comprising at least one piezoelectric element configured to deform along at least one axis in response to an application of the electrical signal thereto, the transducer configured to generate an transducer stroke based on the deformation, the stroke having a magnitude that exceeds the magnitude of the deformation, wherein the transducer stroke is utilized to generate a mechanical force for delivery to the recipient's skull.
Abstract:
A piezoelectirc transducer having a component therein for amplifying the deformation of the piezoelectric element so as to increase the available transducer stroke. This amplification of the piezoelectric element may be provided by a mechanical amplifier coupled to the piezoelectric element. The mechanical amplifier is configured to exert a preloading force on the piezoelectric element.
Abstract:
A bone conduction devise for enhancing the hearing of a recipient comprising a sound input element configured to receive an acoustic sound signal; an electronics module configured to generate an electrical signal representing the acoustic sound signal; a transducer configured to generate mechanical forces representing the electrical signal for delivery to the recipient's skull; one or more extensions mechanically coupled at a first portion to the transducer and further mechanically coupled at a second portion of the one or more extensions to the recipient's bone, wherein the one or more extensions are configured to transfer the mechanical forces from the transducer to the recipient's bone.
Abstract:
A fixation system for a bone conduction device is disclosed. An abutment is coupled to a bone anchor such that vibrations applied to the abutment pass into the bone anchor. The abutment defines a conduction path to the bone anchor such that vibrations applied to the abutment are transferred to the bone anchor. The abutment comprises a plurality of interlocking stacked plates disposed adjacent the bone anchor, wherein the plates form part of the conduction path. The fixation system also comprises a vibratory coupler extending from the bone conduction device, comprising a second conduction surface and a magnet, wherein the magnet attracts to the abutment so as to couple the second conduction surface to the abutment, thereby enabling vibrations to pass through the conduction path. The plates are configured to slide laterally in response to tangential forces incident upon the abutment.
Abstract:
A fixation system for a bone conduction device is disclosed. An abutment is coupled to a bone anchor such that vibrations applied to the abutment pass into the bone anchor. The abutment comprises a first conduction surface, a bearing surface, and a magnetic material at or near the first conduction surface. A coupler extends from a bone conduction device and comprises a second conduction surface, a leveraging extension, and a magnet. The second conduction surface is shaped complimentray to the first conduction surface. The magnet attracts to the magnetic material such that the second conduction surface seats on the first conduction surface, thereby enabling vibrations to pass from the bone conduction device to a recipient's skull.
Abstract:
A bone conduction device for enhancing the hearing of a recipient, comprising: a sound input element configured to receive an acoustic sound signal; an electronics module configured generate an electrical signal representing the acoustic sound signal, a transducer configured to generate mechanical forces representing the electrical signal fro deliver to the recipient's skull; one or more external components mechanically coupled to the transducer and configured to transfer the mechanical forces, and one or more implanted components magnetically coupled to the one or more external components and configured to receive the mechanical forces from the external components.