Abstract:
A distributed switchless system characterized by full mesh connectivity is disclosed. The full mesh distributed switchless system allows direct and indirect communication between a source node and a destination node. In direct communication, data propagates via links connecting the source and destination nodes. In indirect communication, data is first sent to an intermediate node via links connecting the source and intermediate nodes. The intermediate node sends the data to the destination node via links connecting the intermediate node and the destination node. The traffic can be divided into all available links across the nodes, rather than only the links connecting the source and destination nodes. Because indirect communication uses more links compared to direct communication, the traffic in each link is smaller. Consequently, the switchless distributed interconnect system can operate with fewer links between any two nodes and links with smaller bandwidth.
Abstract:
A switching Clos network universal element that can dynamically change its role is disclosed. The universal element contains a matrix of VCSELs and a matrix of photodiodes on top of an electro-optical chip. The matrix of VCSELs sends data via a first set of optical links, and the matrix of photodiodes receives data a second set of optical links. The universal element also receives and sends data through electronic links. The universal element can function as an expander, aggregator or transitive switch in a folded Clos network. As an expander or an aggregator, the universal element uses its optical links as ingress links and its electronic links as egress links. Using this universal element, a network can be constructed without separate switching elements. Multiple universal elements can be positioned on a PCB, and the multiple universal elements can function as one switch.
Abstract:
A passive connectivity optical module ("PassCOM") is disclosed. A PassCOM is a passive device without a switching functionality. A PassCOM connects links between a plurality of nodes using replaceable plugs. The device can be used for an internal inter-node switching system, where each node is capable of sending data to a destination using a specific link. A source node sends data through a particular link that is connected to a link from a destination node in the PassCOM. Data is first sent from a source node through a link connecting the source node and the PassCOM, then the data is transmitted, through a plug, to the destination node using a link connecting the PassCOM and the destination.
Abstract:
A multi-chassis router with passive interconnect and distributed switchless interconnect for connecting a plurality of nodes in full mesh is disclosed. This system allows direct and indirect communication between a source node and a destination node. In direct communication, data propagates via links connecting the source and destination nodes. In indirect communication, data is first sent to an intermediate node via links connecting the source and intermediate nodes. The intermediate node sends the data either to the destination node via links connecting the intermediate node and the destination node. A passive device with replaceable plugs connects the plurality of nodes in full mesh. The passive device facilitates setting up and updating a network.