Abstract:
An aftertreatment component's shape, entrance geometry, and/or position within an aftertreatment assembly can be modified for local and/or bulk exhaust flow control. In some implementations, a body of the aftertreatment component has a non-circular cross-section, a non-circular opening, and/or a variable face geometry. The non-circular cross-section and/or opening can be of a variety of different shapes.
Abstract:
A selective catalytic reduction system may include a single housing defining a single centerline axis. The selective catalytic reduction system may also include a diesel particulate filter disposed within the single housing and having a DPF center axis aligned with the single centerline axis. The selective catalytic reduction system may also include an SCR catalyst disposed within the single housing and having a center axis aligned with the single centerline axis. In some implementations, the diesel particulate filter may include one or more SiC filters. In some implementations, the SCR catalyst may include one or more extruded SCR catalysts.
Abstract:
An aftertreatment system comprises a housing defining a first and a second internal volume fluidly isolated from each other. A first aftertreatment leg extends from the first to the second internal volume and includes an oxidation catalyst and a filter. The oxidation catalyst receives exhaust gas from an inlet conduit and the filter emits exhaust gas into the second internal volume. A second aftertreatment leg extends from the second to the first internal volume and includes at least one SCR catalyst disposed offset from the first aftertreatment leg. A decomposition tube is disposed offset from the SCR catalyst and the oxidation catalyst. The decomposition tube is configured to receive the exhaust gas from the second internal volume and communicate it to the inlet of the at least one SCR catalyst. A reductant injection inlet is defined proximate to the inlet of the decomposition tube for reductant insertion.
Abstract:
A decomposition chamber for an exhaust gas aftertreatment system includes an inlet tube, a selective catalytic reduction (SCR) catalyst member, a mixing collector wall, a distribution cap, and a dividing tube. The inlet tube is configured to receive exhaust gas. The mixing collector wall includes a mixing assembly flow aperture. The distribution cap is coupled to the inlet tube and configured to receive the exhaust gas from the inlet tube. The dividing tube is coupled to the mixing collector wall. The dividing tube separates the distribution cap from the mixing assembly flow aperture. The dividing tube includes a first dividing tube inlet aperture that is configured to receive the exhaust gas from the distribution cap. The dividing tube outlet aperture is configured to provide the exhaust gas to the mixing assembly flow aperture.
Abstract:
Methods of combining catalytic plates into an assembly of a non-monolithic structure, such as a catalyst substrate or filter assembly, of an exhaust aftertreatment system. A plurality of plates may be disposed within a housing in an arrangement that may define a catalytically active volume of a substrate. Each of the plurality of plates may be single-curved or multiple-curved and/or may be represented by three-dimensional nestable structures. The arrangement of plates may be configured such that the flow is axial, radial, or represented by a hybrid, multi-segment intake path. The plurality of plates may be arranged such that they are configured to receive targeted amounts of coating agent, which may differ among the plates.
Abstract:
An aftertreatment system includes a filter configured to receive an exhaust gas and a selective catalytic reduction (SCR) system configured to treat the exhaust gas. A body mixer is disposed downstream of the filter and upstream of the SCR system. The body mixer includes a housing defining an internal volume and including at least a first passageway, a second passageway, and a third passageway. The first passageway receives a flow of the exhaust gas from the filter and directs the flow of the exhaust gas towards the second passageway. The second passageway redirects the flow in a second direction opposite the first direction towards the third passageway. The third passageway redirects the flow in a third direction opposite the second direction towards the SCR system. An injection port is disposed on a sidewall of the housing and configured to communicate an exhaust reductant into the internal volume.