Abstract:
In one aspect there is provided a method. The method may include: determining that an executable implements a sub-execution environment, the sub-execution environment being configured to receive an input, and the input triggering at least one event at the sub-execution environment; intercepting the event at the sub-execution environment; and applying a security policy to the intercepted event, the applying of the policy comprises blocking the event, when the event is determined to be a prohibited event. Systems and articles of manufacture, including computer program products, are also provided.
Abstract:
An endpoint computer system monitors data relating to a plurality of events occurring within an operating environment of the endpoint computer system. The monitoring can include receiving and/or inferring the data using one or more sensors executing on the endpoint computer system. The endpoint computer system can store artifacts used in connection with the plurality of events in a vault maintained on such endpoint computer system. The endpoint computer system, in response to a trigger, identifies and retrieves metadata characterizing artifacts associated with the trigger from the vault. Such identified and retrieved metadata is then provided by the endpoint computer system to a remote server.
Abstract:
Each of a plurality of endpoint computer systems monitors data relating to a plurality of events occurring within an operating environment of the corresponding endpoint computer system. The monitoring can include receiving and/or inferring the data using one or more sensors executing on the endpoint computer systems Thereafter, for each endpoint computer system, artifacts used in connection with the events are stored in a vault maintained on such endpoint computer system. A query is later received by at least a subset of the plurality of endpoint computer systems from a server. Such endpoint computer systems, in response, identify and retrieve artifacts within the corresponding vaults response to the query. Results responsive to the query including or characterizing the identified artifacts is then provided by the endpoint computer systems receiving the query to the server.
Abstract:
An endpoint computer system can harvest data relating to a plurality of events occurring within an operating environment of the endpoint computer system and can add the harvested data to a local data store maintained on the endpoint computer system. A query response can be generated, for example by identifying and retrieving responsive data from the local data store. The responsive data are related to an artifact on the endpoint computer system and/or to an event of the plurality of events. In some examples, the local data store can be an audit log and/or can include one or more tamper resistant features. Systems, methods, and computer program products are described.
Abstract:
Using a recurrent neural network (RNN) that has been trained to a satisfactory level of performance, highly discriminative features can be extracted by running a sample through the RNN, and then extracting a final hidden state hh where i is the number of instructions of the sample. This resulting feature vector may then be concatenated with the other hand-engineered features, and a larger classifier may then be trained on hand- engineered as well as automatically determined features. Related apparatus, systems, techniques and articles are also described.
Abstract:
Determining, by a machine learning model in an isolated operating environment, whether a file is safe for processing by a primary operating environment. The file is provided, when the determining indicates the file is safe for processing, to the primary operating environment for processing by the primary operating environment. When the determining indicates the file is unsafe for processing, the file is prevented from being processed by the primary operating environment. The isolated operating environment can be maintained on an isolated computing system remote from a primary computing system maintaining the primary operating system. The isolating computing system and the primary operating system can communicate over a cloud network.
Abstract:
Described are techniques to enable computers to efficiently determine if they should run a program based on an immediate (i.e., real-time, etc.) analysis of the program. Such an approach leverages highly trained ensemble machine learning algorithms to create a real-time discernment on a combination of static and dynamic features collected from the program, the computer's current environment, and external factors. Related apparatus, systems, techniques and articles are also described.
Abstract:
In some implementations there may be provided a system. The system may include a processor and a memory. The memory may include program code which causes operations when executed by the processor. The operations may include analyzing a series of events contained in received data. The series of events may include events that occur during the execution of a data object. The series of events may be analyzed to at least extract, from the series of events, subsequences of events. A machine learning model may determine a classification for the received data. The machine learning model may classify the received data based at least on whether the subsequences of events are malicious. The classification indicative of whether the received data is malicious may be provided. Related methods and articles of manufacture, including computer program products, are also disclosed.
Abstract:
Data is received or accessed that includes a structured file encapsulating data required by an execution environment to manage executable code wrapped within the structured file. Thereafter, code and data regions are iteratively identified in the structured file. Such identification is analyzed so that at least one feature can be extracted from the structured file. Related apparatus, systems, techniques and articles are also described.
Abstract:
A sample of data is placed within a directed graph that comprises a plurality of hierarchical nodes that form a queue of work items for a particular worker class that are used to process the sample of data. Subsequently, work items are scheduled within the queue for each of a plurality of workers by traversing the nodes of the directed graph. The work items are then served to the workers according to the queue. Results can later be received from the workers for the work items (the nodes of the directed graph are traversed based on the received results). In addition, in some variations, the results can be classified so that one or models can be generated. Related systems, methods, and computer program products are also described.