Abstract:
Audio signal processing enhances audio watermark embedding and detecting processes. Audio signal processes include audio classification and adapting watermark embedding and detecting based on classification. Advances in audio watermark design include adaptive watermark signal structure data protocols, perceptual models, and insertion methods. Perceptual and robustness evaluation is integrated into audio watermark embedding to optimize audio quality relative the original signal, and to optimize robustness or data capacity. These methods are applied to audio segments in audio embedder and detector configurations to support real time operation. Feature extraction and matching are also used to adapt audio watermark embedding and detecting.
Abstract:
Methods and arrangements involving electronic devices, such as smartphones, tablet computers, wearable devices, etc., are disclosed. One arrangement involves a low-power processing technique for discerning cues from audio input. Another involves a technique for detecting audio activity based on the Kullback-Liebler divergence (KLD) (or a modified version thereof) of the audio input. Still other arrangements concern techniques for managing the manner in which policies are embodied on an electronic device. Others relate to distributed computing techniques. A great variety of other features are also detailed.