Abstract:
Provided are, among other things, systems, methods and techniques for decoding an audio signal from a frame-based bit stream. Each frame includes processing information pertaining to the frame and entropy-encoded quantization indexes representing audio data within the frame. The processing information includes: (i) code book indexes, (ii) code book application information specifying ranges of entropy-encoded quantization indexes to which the code books are to be applied, and (iii) window information. The entropy-encoded quantization indexes are decoded by applying the identified code books to the corresponding ranges of entropy-encoded quantization indexes. Subband samples are then generated by dequantizing the decoded quantization indexes, and a sequence of different window functions that were applied within a single frame of the audio data is identified based on the window information. Time-domain audio data are obtained by inverse-transforming the subband samples and using the plural different window functions indicated by the window information.
Abstract:
Provided are, among other things, systems, methods and techniques for encoding an audio signal, in which is obtained a sampled audio signal which has been divided into frames. The location of a transient within one of the frames is identified, and transform data samples are generated by performing multi-resolution filter bank analysis on the frame data, including filtering at different resolutions for different portions of the frame that includes the transient. Quantization data are generated by quantizing the transform data samples using variable numbers of bits based on a psychoacoustical model, and the quantization data are grouped into variable-length segments based on magnitudes of the quantization data. A code book is assigned to each of the variable-length segments, and the quantization data in each of the variable-length segments are encoded using the code book assigned to such variable-length segment.
Abstract:
Provide are systems, methods and techniques for processing frame-based data. A frame of data, an indication that a transient occurs within the frame, and a location of the transient within the frame are obtained. Based on the indication f the transient, a block size is set for the frame, thereby effectively defining a plurality of equal-sized blocks with the frame. In addition, different window functions are selected for efferent ones of the plurality of equal-sized blocks based on the location of the transient, and the framed of data is processed by applying the selected window functions.
Abstract:
A low bit rate digital audio coding system includes an encoder which assigns codebooks to groups of quantization indexes based on their local properties resulting in codebook application ranges that are independent of block quantization boundaries. The invention also incorporates a resolution filter bank, or a tri-mode resolution filter bank, which is selectively switchable between high and low frequency resolution modes or high, low and intermediate modes such as when detecting transient in a frame. The result is a multichannel audio signal having a significantly lower bit rate for efficient transmission or storage. The decoder is essentially an inverse of the structure and methods of the encoder, and results in a reproduced audio signal that cannot be audibly distinguished from the original signal.