Abstract:
For generating 3D audio content from a two-channel stereo signal, the stereo signal ( x ( t )) is partitioned into overlapping sample blocks and is transformed into time-frequency domain. From the stereo signal directional and ambient signal components are separated, wherein the estimated directions of the directional components are changed by a predetermined factor, wherein, if changes are within a predetermined interval, they are combined in order to form a directional centre channel object signal. For the other directions an encoding to Higher Order Ambisonics (HOA) is performed. Additional ambient signal channels are generated by de-correlation and rating by gain factors, followed by encoding to HOA. The directional HOA signals and the ambient HOA signals are combined, and the combined HOA signal and the centre channel object signals are transformed to time domain.
Abstract:
Currently there is no simple and satisfying way to create 3D audio from existing 2D content. The conversion from 2D to 3D sound should spatially redistribute the sound from existing channels. From a multi-channel 2D audio input signal (x (k) (t)) a 3D sound representation is generated which includes an HOA representation Formula (I) and channel object signals Formula (II) scaled from channels of the 2D audio input signal. Additional signals Formula (III) placed in the 3D space are generated by scaling (21, 222; 41, 422; Formula (IV)) channels from the 2D audio input signal and by decorrelating (24, 25; 44, 45, 451; Formula (V)) a scaled version of a mix of channels from the 2D audio input signal, whereby spatial positions for the additional signals are predetermined. The additional signals Formula (III) are converted (27; 47) to a HOA representation Formula (I).