Abstract:
A computer-implemented method for bit-depth efficient image processing includes a step of communicating at least one non-linear transformation to an image signal processor. Each non-linear transformation is configured to, when applied by the image signal processor to a captured image having sensor signals encoded at a first bit depth, produce a nonlinear image that re-encodes the captured image at a second bit depth that may be less than the first bit depth, while optimizing allocation of bit depth resolution in the nonlinear image for low contour visibility. The method further includes receiving the nonlinear image from the image signal processor, and applying an inverse transformation to transform the nonlinear image to a re-linearized image at a third bit depth that is greater than the second bit depth. The inverse transformation is inverse to the nonlinear transformation used to produce the nonlinear image.
Abstract:
In a digital camera system, traditional input color transformations of raw data using a 3 x 3 matrix are replaced by two-dimensional lookup (2-D LUTs) tables that better approximate spectral reflectance characteristics. Chromaticity-like signals and an input scale factor are generated in response to raw sensor output values. The chromaticity signals and the input scale factor are mapped via 2-D LUTs into preliminary output signals and an output scaling factor. A final set of output color signals is generated in response to the preliminary output signals and the output scale factor. The 2-D LUTs are designed in response to spectral response curves generated on both the input and output side of the color transformation.
Abstract:
Imaging methods and devices with pixels divided into pixel groups are disclosed. A pixel group-based global shutter and pixel group-wise staggered long and short exposure followed by readout of two samples per pixel are presented. Example methods and devices for a Bayer color filter array divided into groups of nxn pixels are provided.
Abstract:
Methods and systems for color transforms are disclosed. A memory footprint of look up tables for color transforms can be reduced by separating the look up tables into factors, applying frequency domain transforms, dividing the look up tables into zones, or establishing hierarchical levels with increasing resolution. The methods can be applied to still image or video cameras with limited computation resources that can benefit from reduced memory footprints.
Abstract:
A substantially rectangular spectral representation is synthesized, which is adapted to produce either (a) image capture device sensor outputs if applied to an image capture device or (b) color values if applied to corresponding analysis functions. Spectral expansion, which can be used in various image processing methods, is achieved with the synthesized spectral representation.
Abstract:
An auto exposure method for an image sensor includes (a) evaluating variance, for each of a plurality of histograms of the pixel values from a respective plurality of individual exposures of the image sensor at respective exposure 5 time settings, of contribution from individual bins of the histogram to total entropy of the histogram, to determine an optimal exposure time for the image sensor corresponding to a minimum value of the variance, and (b) outputting the optimal exposure time to the image sensor.
Abstract:
Input scene images are captured from an original scene. The input scene images may be represented in an input color space. The input scene images are converted into color-space-converted scene images in one of an LMS color space, an ICtCp color space, etc. Scene light levels represented in the color-space-converted scene images are mapped, based at least in part on an optical transfer function, to mapped light levels. A tone mapping is applied to the mapped light levels to generate corresponding display light levels to be represented in display images. The display images may be rendered on a target display.
Abstract:
A method for compensation of liquid crystal display response variations in high brightness fields, comprising receiving an image signal having a set of initial liquid crystal display code values for a region, estimating individual backlight power levels for the region of the image signal, determining a combined backlight power level based on the individual backlight power levels of the region, determining at least one change in transmittance based on the combined backlight power level of the region and correcting the set of initial liquid crystal display code values based in the determined at least one change in transmittance.
Abstract:
A substantially rectangular spectral representation is synthesized, which is adapted to produce image capture device sensor outputs if applied to an image capture device. The synthesized substantially rectangular spectral representation can be utilized in generating output color values of an output color space from image capture device sensor outputs, where the image capture device sensor outputs correspond to an image captured by an image capture device. The generated output color values correspond to colors perceived by the human visual system for the same image as that captured by the image capture device. Image capture device gamut is also determined.