Abstract:
The present invention discloses a tertiary amine initiator and polymeric polyol compositions made therefrom useful for making polyurethane polymers, especially polyurethane foams. Said polyurethane polymer foams demonstrate a good balance of mechanical properties, physical properties and low emissions. The tertiary amine initiator is the reaction product of a dihydroxy tertiary amine and a polyhydroxy alcohol, such as the reaction product of N-methyl ethanolamine and glycerine.
Abstract:
A method of reducing the number or size of voids in a polyurethane comprises reacting the formulation components in a container having an inner surface, or having a liner that has an inner surface, that has been modified to reduce the shear forces that normally accompany introduction of such components into a container. This is done by modifying the inner container's or container liner's surface by profiling and/or engraving it, or by including as a liner a mesh. The profiling and/or engraving or mesh serves to alter the formulation's flow dynamics such that the polyurethane has fewer and/or smaller voids, i.e., has a more uniform density, than polyurethanes formed without the modification.
Abstract:
The present invention provides two-component aqueous textured layer forming compositions useful for forming flexible top coat layers for sports surfaces. The compositions comprise vulcanized or crosslinked rubber granules, for example, EPDM rubber, a soft:hard acrylic emulsion copolymer blend in a solids weight ratio to vulcanized or crosslinked rubber granule solids that ranges from less than 1:4 to 1:9, a polyalkylene oxide rheology modifier, one or more high boiling alcohols and, as a separate component, an aqueous dispersion of an aliphatic polyisocyanate as well as an epoxy silane. The vulcanized or crosslinked rubber granules may have a sieve particle size of 8 mm or less. The inventive top coat layers have enhanced tensile strength and elongation as well as improved pot life and color stability.
Abstract:
Embodiments relate to a coating, adhesive, sealant, elastomer, or reaction injection molded material forming polyurethane composition that comprises an isocyanate component that includes at least one isocyanate-terminated prepolymer, and an isocyanate reactive component that includes at least one Lewis acid catalyst polymerized polyether polyol having a weight average molecular weight from 200 g/mol to 1,000 g/mol, an average primary hydroxyl group content of at least 30 %, and an average acetal content of at least 0.05 wt%.
Abstract:
A polyurethane foam-forming reaction mixture composition including: (I) an organic isocyanate; and (II) an admixture of: (a) at least one autocatalytic polyol; (b) at least one ethylene oxide (EO)-capped polyol; (c) at least one reactive blowing catalyst; (d) at least one surfactant; and (e) water; and a polyurethane foam prepared from the above polyurethane foam-forming reaction mixture composition.
Abstract:
A reactive polyurethane foam-forming composition including (I) an isocyanate-containing material; and (II) a polyol-containing admixture of: (a) at least one autocatalytic polyol; (b) at least one grafted polyol; (c) at least one reactive polyether polyol; (d) at least one reactive catalyst; (e) at least one surfactant; and (f) water; and a process for making the above foam-forming composition.
Abstract:
Disclosed is a composition and process for making a flexible polyurethane foam from a polyol mixture that contains a copolymer polyol, a polyether polyol having a functionality equal to or greater than 3, an autocatalytic polyol, a hydroxyalkyltriethylenediamine and/or a hydroxytriethylenediamine catalyst, and a tertiary amine catalyst. Said foams have excellent resiliency and low compression sets and are particularly suited for use in low emission automobile seating applications.