Abstract:
A resin bead comprising functional groups of structure (S1), wherein –X- is a bivalent linking group and –Y is a monovalent group having structure (S2), wherein the circular structure in structure (S2) has four or more atoms, and wherein the mole ratio of multivalent atomic cations to –X- groups is either 0:1 or is 0.01:1 or lower.
Abstract:
A method of processing an aqueous solution, wherein the aqueous solution comprises one or more dissolved sugar, one or more dissolved sugar alcohol, or a mixture thereof, wherein the method comprises bringing the aqueous solution into contact with a collection of resin beads, wherein the resin beads comprisefunctional groups of structure (S1).
Abstract:
A method for chromatographically separating a first saccharide from a liquid eluent comprising the first saccharide and a second saccharide by passing the liquid eluent through a bed including a polymeric macroporous alkylene-bridged resin in calcium form.
Abstract:
A method for chromatographically separating a first saccharide from a liquid eluent comprising the first saccharide and a second saccharide by passing the liquid eluent through a bed comprising a gel-type strong acid cation exchange resin in calcium form, wherein the resin is provided in bead form and is characterized by comprising at least 20% whole cracked beads.
Abstract:
A method for recovering nickel and cobalt from a product liquor solution by processing the product liquor solution through a continuous ion exchange process including a plurality of ion exchange beds containing nickel selective ion exchange resin that pass through individual process zones as part of a nickel recovery circuit, wherein the method includes the following steps: (a) passing the product liquor solution through an ion exchange bed to load nickel onto the ion exchange resin and produce a cobalt-containing raffinate solution, (b) passing a sulfuric acid solution through the loaded ion exchange bed to strip nickel from the ion exchange resin and produce a nickel-containing eluate, (c) passing a rinse solution through the stripped ion exchange bed, (d) adjusting the pH of the cobalt-containing raffinate solution to a pH of at least 2.3, (e) passing the cobalt-containing raffinate solution through an ion exchange bed to pre-load cobalt on the ion exchange resin, (f) repeating step (a) though (e) until the cobalt concentration of the cobalt-containing raffinate solution increases to at least twice that of the product liquor solution, and (g) removing a first portion of the cobalt-containing raffinate solution of step (d) from the nickel recovery circuit for subsequent cobalt recovery, and (h) passing a second portion of the cobalt-containing raffinate solution from step (d) to step (e).