Abstract:
Exemplary methods include a first network device participating in an election process to determine a designated bit forwarding router (D-BFR). The methods include in response to determining the first network device is elected to be the D-BFR, performing D-BFR operations comprising determining an elected bitmask (BM) length of a BM based on maximum local BM lengths advertised by other BFRs in the network, wherein each bit of the BM will correspond to a bit forwarding egress router (BFER), and advertising the determined elected BM length to other BFRs. The methods may further include one or more of determining an elected tree type based on supported tree types advertised by other BFRs in the network, assigning one or more BM positions (BMPs) to one or more BFERs, and advertising the elected determined tree type and/or the assigned one or more BMPs.
Abstract:
A method is executed by a network device to calculate loop free alternative (LFA) for each node in an intermediate system - intermediate system (IS-IS) area or IS-IS domain where the network device is connected with other nodes via multiple parallel links. The method includes a shortest path first (SPF) computation of the primary paths for the network device that tracks directly connected links from each node in the IS-IS area or IS-IS domain to the network device which is a source node for the SPF. These tracked links can then be utilized in subsequent LFA computations to avoid unnecessary calculations.
Abstract:
A method forward Ethernet frames at a node in a network supporting an implementation of shortest path bridging (SPB) protocol is disclosed. The method starts with a shortest path computation for the node (referred to as the computing node). The shortest path computation selects at least a shortest path to each destination node in the network, where a neighboring node on the shortest path to reach each node is recorded. Then it computes a downstream loop-free alternate (LFA) node for a destination node, where the LFA node is downstream of the computing node but not on the selected shortest path to the destination node from the computing node. Then when connectivity to the neighboring node on the computed shortest path is detected to be abnormal, the node forwards an Ethernet frame with a destination media access control (MAC) address corresponding to the destination node through the LFA node.