Abstract:
Provided is a bimetallic tube for transport of hydrocarbon feedstocks in refinery process furnaces, and more particularly in furnace radiant coils, including: i) an outer tube layer being formed from stainless steels including chromium in the range of 15.0 to 26.0 wt.% based on the total weight of the stainless steel; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt.% of Al, 20.0 wt.% to 25.0 wt.% Cr, less than 0.4 wt.% Si, and at least 35.0 wt.% Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof. Also provided are methods of making and using the bimetallic tube.
Abstract:
A process for upgrading a liquid petroleum or chemical stream wherein said feedstream flows countercurrent to the flow of a treat gas, such as a hydrogen-containing gas, in at least one reaction zone. The feedstream treated so that it is substantially free of particulate matter and foulant precursors.
Abstract:
A fluid coking unit for converting a heavy oil feed to lower boiling products by thermal has a centrally-apertured annular baffle at the top of the stripping zone below the coking zone to inhibit recirculation of solid particles from the stripping zone to the coking zone. By inhibiting recirculation of the particles from the stripping zone to the coking zone, the temperatures of the two zones are effectively decoupled, enabling the coking zone to be run at a lower temperature than the stripping zone to increase the yield of liquid products.