Abstract:
A cooling system for a low-cryogen superconducting magnet includes a primary cooling loop having a liquid reservoir containing a supply of liquid cryogen and a plurality of cooling tubes fluidly coupled to the liquid reservoir and in thermal communication with the superconducting magnet. The liquid cryogen is configured for circulation through the cooling tubes for providing primary cooling for the magnet for cooling the magnet to a target temperature. The cooling system also includes a thermal battery coupled to a component that is cooled to the target temperature by the primary cooling loop and is configured to be cooled by the primary cooling and to absorb heat from the at least one component during an interruption in the primary cooling to maintain the magnet at approximately the target temperature.
Abstract:
Various methods and systems are provided for a flexible, comfortable breast radio frequency (RF) coil assembly for a magnetic resonance imaging system. The breast RF coil assembly may include two cups each housing eight RF coils arranged in an overlapping fashion. The breast RF coil assembly may further include respective flanking coil arrays on a side of each cup, with each flanking coil array housing four RF coils.
Abstract:
A superconducting magnet cooling system is disclosed. The superconducting magnet cooling system includes a superconducting magnet; a liquid cryogen vessel for cooling the superconducting magnet; a heat exchanger device in fluid communication with the liquid cryogen vessel; a cryorefrigerator for heat exchange with the heat exchanger device; and a flexible connection device having high thermal conductivity and thermally connecting the cryorefrigerator and the heat exchanger device to provide vibration isolation of the cryorefrigerator from the heat exchange device.