Abstract:
The disclosure relates generally to sealed electronic devices. More particularly, the invention relates to electronic devices employing organic devices having a seal. Packages having organic electronic devices are presented, and a number of sealing mechanisms are provided for hermetically sealing the package to protect the organic electronic device from environmental elements.
Abstract:
Provided are organic device packages configured to limit current flow through shorted sub-elements in the organic device. In some embodiments, the organic device package may include multiple elements, each having multiple sub-elements connected in parallel. Each element may have a first electrode patterned into thin electrode strips connected in parallel, and each of the electrode strips may be an electrode of one of the multiple sub-elements. The electrode strips may have a resistance which may be higher than the overall resistance of other sub-elements in the element, such that a current flowing to the element may be substantially limited from flowing through a shorted sub-element in the element. Each element may also be connected in series to another element in the organic device package, and one or more series- connected elements may also be connected in parallel within the package.
Abstract:
An optoelectronic device having a monolithic interconnect structure includes a continuous anode layer, a discontinuous cathode layer, and an electroactive layer sandwiched between the continuous anode layer and the discontinuous cathode layer.
Abstract:
Light extraction from wet-coated OLED devices may be improved by optimizing the charge injection or transport layers to direct more light into a supporting substrate, thus maximizing the final light extraction efficiency. Accordingly, in one aspect, the present invention relates to an optoelectronic device (20) that has at least one charge carrier injecting or transporting layer (3) that includes inorganic nanoparticles (11, 12) having a bimodal particle size distribution and dispersed in an organic matrix. In another aspect, the present invention relates to an optoelectronic device (10) that includes an electron transporting layer (6) comprising inorganic nanoparticles (11) dispersed in an organic matrix. In yet another aspect, the present invention relates to an optoelectronic device (30, 40) wherein the surface of the electron transporting layer (6) that is contiguous to the cathode is uneven (14). In yet another aspect, the present invention relates to an optoelectronic device comprising • a substrate; • an anode; • a cathode; • an electroluminescent layer; and • electron transporting layer comprising a fluoro compound of formula I (Ar 2 ) n -Ar 1 -(Ar 2 ) n I wherein Ar 1 is C 5-C 40 aryl, C 5 -C 40 substituted aryl, C 5 -C 40 heteroaryl, or C 5 -C 40 substituted heteroaryl; • Ar 2 is, independently at each occurrence, fluoro- or fluoroalkyl- substituted C 5-40 heteroaryl; and • n is 1, 2, or 3.
Abstract:
A packaged optoelectronic device and a method for manufacturing is provided. The packaged optoelectronic device includes at least one optoelectronic device with two electrodes sandwiched between a first barrier layer and a second barrier layer. At least one of the barrier layers comprises at least one aperture. Further, the packaged device includes a plurality of thin electrically conductive connectors. Each of the thin connectors extends out through the at least one aperture and is coupled to the anode or the cathode. Further, the thin connectors are connected to an external power source to provide power to the anode and the cathode.