Abstract:
In certain example embodiments, a coated article includes a carbon-doped zirconium based layer before heat treatment (HT). The coated article is heat treated sufficiently to cause the carbon-doped zirconium oxide and/or nitride based layer to result in a carbon-doped zirconium oxide based layer that is scratch resistant and/or chemically durable. The doping of the layer with carbon (C) has been found to improve wear resistance.
Abstract:
A low-emissivity (low-E) coating on a substrate (e.g., glass substrate) includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers), a layer comprising silicon nitride, and an absorber layer of or including a material such as niobium zirconium which may be oxided and/or nitrided. The absorber layer is designed to allow the coated article to realize glass side reflective (equivalent to exterior reflective in an IG window unit when the coating is provided on surface #2 of an IG window unit) silver color. In certain example embodiments, the coated article (monolithic form and/or in IG window unit form) has a low visible transmission (e.g., from 15-45%, more preferably from 22-39%, and most preferably from 24-35%). In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered and/or heat bent).
Abstract:
A low-emissivity (low-E) coating on a substrate (e.g., glass substrate) includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers), a layer comprising silicon nitride, and an absorber layer of or including a material such as niobium zirconium which may be oxided and/or nitrided. The absorber layer is designed to allow the coated article to realize glass side reflective (equivalent to exterior reflective in an IG window unit when the coating is on surface #2 of the IG unit) grey color. In certain example embodiments, the coated article (monolithic form and/or in IG window unit form) has a low visible transmission (e.g., from 20-45%, more preferably from 22- 39%, and most preferably from 25-37%). In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered and/or heat bent).