Abstract:
A turbine assembly is provided for downhole components of a well system. The turbine assembly includes a translational component which translates when a fluid is passed through the turbine assembly. The turbine assembly also includes a braking system which includes one or more magnets in magnetic communication with a conductive component. The braking system enacts a braking force onto the translational component due to the relative translation of the one or more magnets with the conductive component. The braking force from the braking system is proportional to the rate of translation of the translational component.
Abstract:
A steam operated flow control device and method is disclosed. In one mode, the flow control device enables steam to be injected into a subterranean formation region containing hydrocarbons. In another mode, the flow control device enables the hydrocarbons to be produced from the subterranean formation to the surface. The flow control device includes a piston disposed between a housing and a mandrel having aligned ports, which slides between a first position where one set of ports align with the ports in the housing and the mandrel and a second position where another set of smaller ports align with the ports in the housing and mandrel. The piston is operated by a bellows having a chamber which contains a fluid. The fluid responds to temperature and/or pressure variations.
Abstract:
Disclosed are sand control screens and completion assemblies that receive, retain, and protect control lines during installation and operation thereof. One disclosed completion assembly includes a base pipe, at least one screen jacket positioned around the base pipe and operable to prevent an influx of particulate matter of a predetermined size therethrough, a control line housing arranged uphole from the at least one screen jacket and having a fiber optic splicing block disposed therein, the at least one fiber optic splicing block being communicably coupled to a control line that extends uphole from the control line housing, and one or more hydraulic conduits arranged longitudinally between the at least one screen jacket and the base pipe and extending from the control line housing.
Abstract:
A metal patch for patching a downhole well casing comprises a metal sealant having a shape congruent with a section of the downhole well casing and transition-able from a first state to a second state. The metal sealant expands and hardens in response to hydrolysis. The metal sealant is one of an alkaline earth metal, a transition metal, and a metal oxide. The metal sealant can be one of an alkaline earth metal, a transition metal, and a metal oxide and at least one alloy, wherein the at least one alloy is selected from a group consisting of Al, Zn, Mn, Zr, Y, Nd, Gd, Ag, Ca, Sn, and RE. The at least one alloy can be alloyed with a dopant that promotes corrosion, such as Ni, Fe, Cu, Co, Ir, Au, and Pd. The at least one alloy can be alloyed with a dopant that inhibits passivation.
Abstract:
The disclosed embodiments include gravel pack assemblies, method to bypass a fluid restrictor during gravel packing operations, and methods to control fluid flow during and after gravel packing operations. In one embodiment, a gravel pack assembly including a flow restrictor that is coupled to a downhole string that is deployed in a borehole is disclosed. The flow restrictor forms a first fluid passageway from the borehole to an internal cavity of the string. The gravel pack assembly includes a fluid bypass portion having a first chamber, a sealing member inserted into the first chamber; and an actuation assembly operable to actuate the sealing member. The fluid bypass portion forms a second fluid passageway from the borehole to the internal cavity of the downhole string prior to actuation of the actuation assembly. After actuation of the actuation assembly, fluid flow through the second fluid passageway is restricted by the sealing member.
Abstract:
Disclosed embodiments include a packer. The packer includes a fluid bypass positioned along a longitudinal axis of the packer. The fluid bypass provides a fluid flow path between a downhole location and an uphole location from the packer. Additionally, the packer includes a sealing element positioned around the fluid bypass that is elastically deformable to expand in a direction radially outward from the longitudinal axis when the sealing element experiences axial compression. The sealing element includes at least one elastomeric seal reinforcer molded into the elastomeric seal.
Abstract:
Included are wellbore sealing systems and methods of use. An example wellbore sealing system comprises a rigid sealing device capable of expansion and having an exterior having holes disposed therethrough; and an expandable sealing layer disposed around the rigid sealing device. The expandable sealing layer comprises an elastomeric layer and a reinforcing layer.
Abstract:
A downhole barrier device comprising a housing having a design and a rupture layer formed with the housing and having another design. The housing and rupture layer are integrally formed using a laser melting process and have a density greater than 98 percent. The laser melting process is performed using a 3D printing process. The other design can be selected from a plurality of designs including at least two of: at least one fabricated stress concentration; at least one pattern of thickness less that of a thickness of the design; a sealing layer, a support layer, and a flow hole; and at least one shape selectable selected from a disc shape, a pinched shape, a folded shape, and a curved shape. The downhole barrier device can be formed using a metal selected from a plurality of metals and be selected based on operational use of the downhole barrier device.
Abstract:
A system operable to seal at least a portion of a well downhole from a horizontal segment of the well includes an electric wireline having a position locator for locating the position of a flow control device or leak in a tubing segment of the well. The wireline system also includes a setting tool for actuating an expandable patch positioned that is configured to restrict the flow of fluid into the tubing segment at a determined location determined by the position locator. An actuator may be coupled to the setting tool and configured to actuate the tool to install the expandable patch at the determined location to restrict flow. A tractor powered by the wireline may also be provided to transport the system along the horizontal well to position the patch at the determined location.
Abstract:
Included are systems, apparatuses, and methods for operation of an electronic inflow control device without electrical connections. An example of a well system comprises an electric control line and an electronic inflow control device. The electric control line comprises at least one primary winding. The electronic inflow control device comprises a secondary winding inductively coupled to the primary winding; a flow regulator in fluidic communication with an inlet of the electronic inflow control device and adjustable to provide a flow resistance to a fluid flowing through the electronic inflow control device, and a controller configured to actuate the flow regulator to change the flow resistance through the electronic inflow control device.