Abstract:
In accordance with presently disclosed embodiments, systems and methods for using containers, instead of pneumatic transfer, to move bulk material from a transportation unit to a blender receptacle of a blender are provided. A transportation unit may deliver one or more containers of bulk material to the well site, where one or more conveyors may deliver the containers to a location proximate the blender receptacle. A chute may extend from the bottom of each container to route bulk material from the one or more containers directly into the blender receptacle. Since the transportation unit is able to unload the containers of bulk material without pneumatic transfer, the containers may enable a cleaner and more efficient bulk material transfer at the site.
Abstract:
In accordance with embodiments of the present disclosure, systems and methods for using containers of bulk material along with a bucket conveyor system, instead of a pneumatic transfer process, to move the bulk material from a transportation unit to a storage/delivery system are provided. A transportation unit may deliver one or more containers full of bulk material toward a fill hopper of the bucket conveyor system. The containers may be positioned proximate the fill hopper to release the bulk material directly into the fill hopper. The bucket conveyor may deliver the bulk material from the fill hopper into the storage/delivery system. Since the containers are maneuverable into a position to output bulk material directly into the fill hopper and without pneumatic transfer, the bucket conveyor system may enable a cleaner and more efficient bulk material transfer at the site.
Abstract:
An example system includes a blender unit for producing a treatment fluid, the blender unit being configured to hold at least one portable bulk material container thereon. The system further includes a first device responsible for loading portable bulk material containers onto the blender unit, and a second device responsible for unloading portable bulk material containers from the blender unit.
Abstract:
In accordance with presently disclosed embodiments, systems and methods for efficiently managing bulk material are provided. The disclosure is directed to a portable support structure used to receive one or more portable containers of bulk material and output bulk material from the containers directly into the blender hopper. The portable support structure may include a frame for receiving and holding the one or more portable bulk material containers in an elevated position proximate the blender hopper, as well as one or more gravity feed outlets for routing the bulk material from the containers directly into the blender hopper. In some embodiments, the portable support structure may be transported to the well site on a trailer, unloaded from the trailer, and positioned proximate the blender unit. In other embodiments, the portable support structure may be a mobile support structure that is integrated into a trailer unit.
Abstract:
Cylinder pump systems and methods for pumping and measuring fluids are provided. The pump system includes a piston cylinder pump, a linear actuator, and a motor assembly. The piston cylinder pump includes a piston located within a cavity of a cylinder body and dividing the cavity into a first adjustable chamber and a second adjustable chamber and a rod coupled to the piston. The linear actuator includes a shaft coupled to the rod and the linear actuator converts rotational motion to linear motion to linearly move the rod. The motor assembly is coupled to the linear actuator and operable to drive the linear actuator.
Abstract:
Controlling the dust emissions from the discharge of bulk materials from a container provides many benefits. A container engages a support structure that includes a frame. The frame includes a dust control enclosure coupled to an outlet or a hopper at the top of the frame and the container or a discharge gate of the container. The dust control enclosure comprises a collapsible and flexible material so that a tight seal is formed between the container and the hopper or the outlet of the frame. Dust from the discharged of the bulk material from the container is contained within the support structure. A dust control panel may also be disposed at the top of the frame to prevent any dust from migrating through the frame. The container may comprise a plurality of dust enclosure panels to further prevent the escape of dust during discharge of the bulk material.
Abstract:
In accordance with presently disclosed embodiments, systems and methods for efficiently managing bulk material and dry additives to be mixed with bulk material in a blender are provided. The disclosed systems include a modular portable container that can be used to hold multiple types of dry flowable material for transportation about a work site. The different types of dry materials can be selectively released from the modular container for mixing with liquid and bulk material in a blender. The modular container generally includes a base structure that supports a number of individual, separable, and fully enclosed compartments. The compartments may each hold a different type of dry material, and the compartments may be arranged onto the base structure adjacent one another and removably secured to the base structure so that the compartments can be transported as a single unit about the work site.
Abstract:
In accordance with presently disclosed embodiments, systems and methods for sequencing portable containers of bulk material to provide continuous bulk material usage at an outlet are provided. The disclosed sequencing techniques may involve identifying a sequence for opening different portable containers of bulk material (or identifying the "next" portable container to open) and automatically actuating the discharge gates of the portable containers in the desired sequence to provide a continuous flow of bulk material to the outlet (e.g., blender unit). The identified sequence may be executed through a control system communicatively coupled to actuators used to open/close the discharge gates of the portable bulk material containers. A GUI may be communicatively coupled to the control system to allow an operator to select the desired sequence for execution by the control system and to display information regarding the portable bulk material containers.
Abstract:
In accordance with presently disclosed embodiments, an inventory management system and method are provided. The inventory management system and method utilize an inverted database architecture that stores all the individual information related to each inventory item with the item itself, rather than just an identification number. Successive local, regional, and enterprise databases may be constructed from the item level up. That way, each inventory item effectively becomes a database, storing all its own data, and the higher level databases may be updated to reflect the information from the lower level databases when communication is available. This inventory management system of nested databases may be of particular use in the management of bulk material (e.g., powder, granular, or liquid) inventory for remote supply, transportation, and use applications.
Abstract:
An apparatus includes a primer pump having a pneumatic power inlet, a fluid inlet coupled to receive a fluid from a fluid source and a fluid outlet to output the fluid in response to a pressure at the fluid outlet being less than a pressure at the pneumatic power inlet. The apparatus includes a liquid additive pump having a fluid inlet coupled to the fluid outlet of the primer pump to receive the fluid, wherein the primer pump is to apply a positive pressure at the fluid inlet of the liquid additive pump.