Abstract:
A system and method for making measurements inside a wellbore makes use of a diamond crystal with a nitrogen vacancy center (NV-center) to sense temperature, pressure, magnetic fields, strain, electric fields, or other parameters of the downhole environment. The system includes a microwave source that can be positioned to produce microwaves inside the wellbore and a light source that can be positioned to produce interrogation light inside the wellbore. The NV-center of the diamond is struck by the interrogation light. A spectrometer can be adapted to receive the excitation light output from the NV-center and produce a spectrum of the excitation light. The spectrum is indicative of the value of the parameter inside the wellbore.
Abstract:
A method and system are disclosed that provide chemical composition data of a fluid. The system includes a first downhole electro-opto-mechanical device to transmit microwave radiation through the fluid. The microwave radiation is generated by the first downhole electro-opto-mechanical device in response to a first light signal. A second downhole electro-opto-mechanical device receives the microwave radiation and generates a second light signal in response to the received microwave radiation. A light detection device is coupled to the second downhole electro-opto-mechanical device to generate an electrical signal in response to the second light signal. The electrical signal is indicative of the chemical composition of the fluid.
Abstract:
A submersible vehicle is provided which includes a housing, an optical fiber coupled with the housing and communicatively coupled with a data acquisition system, and a propulsion system. The propulsion system is configured to propel the submersible vehicle in a fluid at a velocity. The optical fiber is configured to be released at a release rate equal to or greater than the velocity of the submersible vehicle.
Abstract:
A system, method, and device for determining volume concentration with diffraction of electromagnetic radiation. A device for determining a volume concentration of a fluid in a sample comprises a transducer, a transmitter, a detector, and a processor. The transducer generates a standing acoustic wave through the sample. The transmitter emits electromagnetic (EM) radiation into the sample such that the EM radiation is diffracted by the sample. The detector is responsive to the diffracted EM radiation and generates a signal indicative of a wavelength of an acoustic wave corresponding to the standing acoustic wave. The processor analyzes the signal to determine the volume concentration of the fluid in the sample.
Abstract:
A method, system, and device for terahertz spectroscopy to analyze a sample. The device comprises a transmitter, a waveguide, a receiver, and a processor. The transmitter generates electromagnetic (EM) radiation in a terahertz frequency band from about 0.1 terahertz to about 10 terahertz. The waveguide propagates the EM radiation generated from the transmitter and houses the sample to attenuate the EM radiation. The receiver is in communication with the waveguide and generates a signal in response to EM radiation propagating in the waveguide. The processor analyzes the signal to identify a parameter associated with the sample.
Abstract:
A borehole fluid imaging system includes a plurality of radiation sources located circumferentially around the borehole. A plurality of radiation detectors are located circumferentially around the borehole. The plurality of radiation detectors detect the radiation transmitted by each of the respective ones of the plurality of radiation sources. A controller is coupled to the plurality of radiation detectors to determine an attenuation of the radiation at the plurality of detectors and generate an image of the fluid in response to the attenuation of the radiation.
Abstract:
Apparatuses and methods for providing voltage to a metal layer of an optical cable are provided. The metal layer may be configured to provide an electric shock to an animal upon contact.
Abstract:
Systems and methods for terahertz modulation in a terahertz frequency band from about 0.1 terahertz to about 10 terahertz propagating in a wellbore intersecting a subterranean earth formation. A transmitter generates the EM radiation in the terahertz frequency band. A modulator located in the wellbore receives the EM radiation and generates an amplitude modulated signal with the EM radiation.
Abstract:
A quasi-optical waveguide apparatus includes a waveguide having a chamber formed by a substantially cylindrical body and configured to propagate terahertz radiation. A plurality of windows are included wherein each window is coupled to a respective end of the waveguide such that the chamber is substantially sealed from the ambient atmosphere. The plurality of windows are transparent to the terahertz radiation.
Abstract:
A pipe has a longitudinal axis. A flex board extends along the longitudinal axis within the pipe and curls around the longitudinal axis. A cross-section of the flex board perpendicular to the longitudinal axis has a flex-board curve shape that has a first section on a first side of a line perpendicular to the longitudinal axis and a second section on a second side of the line perpendicular to the longitudinal axis. The first section has a first section shape and the second section has a second section shape. A first conductive stripe is coupled to the flex board, extends along the longitudinal axis, and follows the contour of the first section of the flex board. A second conductive stripe is coupled to the flex board, extends along the longitudinal axis, and follows the contour of the second section of the flex board.