Abstract:
Degradable downhole tools that include a doped aluminum alloy may degrade via a galvanic mechanism. More specifically, such a degradable downhole tool may comprise at least one component of the downhole tool made of a doped aluminum alloy that at least partially degrades by micro-galvanic corrosion in the presence of water having a salinity of greater than about 10 ppm, wherein the doped aluminum alloy comprises aluminum, 0.05% to about 25% dopant by weight of the doped aluminum alloy, less than 0.5% gallium by weight of the doped aluminum alloy, and less than 0.5% mercury by weight of the doped aluminum alloy, and wherein the dopant is selected from the group consisting of iron, copper, nickel, tin, chromium, silver, gold, palladium, carbon, and any combination thereof.
Abstract:
Downhole tools, and methods and systems related thereto, comprising a body; and at least one sealing element composed of an elastomer and anhydrous acid particles, and wherein at least a portion of the sealing element hydrolytically degrades in a wellbore environment. The anhydrous acid particles hydrolyze to form an acid that accelerates degradation of the sealing element.
Abstract:
Methods including introducing a frac plug into a wellbore in a subterranean formation, the frac plug comprising at least a mandrel, slips, and a packer element, wherein at least a portion of the mandrel and/or the slips is composed of a degradable alloy selected from the group consisting of a magnesium alloy, an aluminum alloy, and any combination thereof. The wellbore may be a cased wellbore or an open-hole wellbore, and wherein the slips are frictionally engaged with the casing string or the wellbore wall and the packer element is compressed against the casing or the wellbore wall to set the frac plug. One or more perforations is created within the formation and the formation is hydraulically fractured. The frac plug is at least partially degraded upon contact with an electrolyte in the wellbore before or after beginning production of a hydrocarbon.
Abstract:
Downhole tools, methods, and systems of use thereof, the downhole tools comprising at least one component made of a doped alloy that at least partially degrades by micro-galvanic corrosion in the presence of fresh water having a salinity of less than about 1000 ppm, and wherein the doped alloy is selected from the group consisting of a doped magnesium alloy, a doped aluminum alloy, and any combination thereof.
Abstract:
Downhole tools having at least one component made of a doped magnesium alloy solid solution that at least partially degrades in the presence of an electrolyte, wherein the doped magnesium alloy is selected from the group consisting of a doped MG magnesium alloy, a doped WE magnesium alloy, a doped AZ magnesium alloy, a doped ZK magnesium alloy, a doped AM magnesium alloy, and any combination thereof.
Abstract:
Downhole tools, methods, and systems of use thereof, the downhole tool comprising a wellbore isolation device that provides a plurality of components including one or more first components and one or more second components, wherein at least the first and second one or more components are made of a degradable metal material that degrades when exposed to a wellbore environment, and wherein the one or more first components is fabricated by a first fabrication method and the one or more second components is fabricated by a second fabrication method.
Abstract:
A wellbore servicing system comprising two or more sensing, tool nodes, wherein each of the sensing, tool nodes are configured to selectively allow, disallow, or alter a route of fluid communication between an axial flowbore thereof and an exterior thereof via one or more ports, and wherein each of the sensing, tool nodes are further configured to monitor at least one parameter, and a logging controller node wherein the logging controller node communicates with the sensing, tool nodes via a near field communication (NFC) signal.
Abstract:
Isolation device including a base with an inner bore formed therein. The inner bore has an inner diameter and extends along a longitudinal axis of the base and an outer surface of the base has one or more engagement surfaces disposed thereon. An elastomeric element coupled with the base and has an inner bore formed therein. The elastomeric element inner bore has an inner diameter substantially the same as the inner diameter of the inner bore of the base. A fluid flow passing through the inner bore of the elastomeric element and the inner bore of the base at a predetermined flow rate collapses the inner bore of the elastomeric element reducing the inner diameter of the elastomeric element, thereby blocking flow therethrough.
Abstract:
A method includes positioning a completion assembly in a wellbore penetrating a subterranean formation and conveying a frac plug through the completion assembly. The completion assembly may provide a fracturing assembly. The method further includes detecting a wireless signal provided by the frac plug with a sensor included in the fracturing assembly, actuating a sliding sleeve of the fracturing assembly based on detection of the wireless signal and thereby moving the sliding sleeve to expose one or more flow ports, setting the frac plug in the wellbore downhole from the fracturing assembly, conveying a wellbore projectile through the completion assembly, receiving the wellbore projectile with the frac plug, and thereby sealing the wellbore at the frac plug, and injecting a fluid under pressure into the subterranean formation via the one or more flow ports.
Abstract:
Downhole tools and methods and systems associated therewith, wherein the downhole tools comprise a body and at least one sealing element comprising an aqueous-degradable thermoplastic rubber copolymer composed of a thermoplastic component and a rubber component. The thermoplastic component is present in an amount of about 5% to about 95% by weight of the aqueous-degradable thermoplastic rubber copolymer, and at least a portion of the sealing element hydrolytically degrades when exposed to an aqueous fluid.