Abstract:
A fast turn on compensation system for a synthesized signal source includes a synthesized signal source coupled to a power supply and configured to generate a phase stable radio frequency (RF) output signal. A mute amplifier is coupled to the synthesized signal source and the power supply. A dummy amplifier is coupled to the mute amplifier and the power supply. A mute controller is coupled to the mute amplifier and the dummy amplifier, the mute controller is responsive to an enable signal and configured to enable the dummy amplifier and disable the mute amplifier when no RF output signal is being generated and disable the dummy amplifier and enable the mute amplifier when the RF output signal is being generated such that total power supply current delivered to the synthesized signal source and the dummy amplifier or mute amplifier is approximately constant before, during, and after enabling the mute amplifier to reduce phase disturbance of the RF output signals.
Abstract:
A fractional-N frequency synthesizer having reduced fractional switching noise and spurious signals is provided. The synthesizer includes a voltage controlled oscillator for providing an output signal. A fractional-N divider is responsive to the voltage controlled oscillator for providing a divided output signal having fractional switching noise. A band pass filter is responsive to the fractional-N divider for reducing the fractional switching noise and non-linearities that result in spurious signals. A phase detector is responsive to a reference signal and the band pass filter for providing a control signal representative of the phase difference between the reference signal and the signal from the band pass filter. A loop filter is responsive to the phase detector for filtering the control signal to control the voltage controlled oscillator, the output of the loop filter having reduced fractional switching noise and spurious signals.