Abstract:
A process for treating a sulfurous fluid to form gypsum and magnesium carbonate, whereby the sulfurous fluid is scrubbed with a sequestrating agent to yield a scrubbed fluid, gypsum and magnesium sulfate. The flue gas desulfurized gypsum is isolated from the magnesium sulfate solution by filtration or centrifugation. The magnesium sulfate is reacted with a carbonate salt to produce a magnesium carbonate whereby the reaction conditions are controlled to control the properties of the magnesium carbonate produced.
Abstract:
A process for converting natural calcium carbonate into precipitated calcium carbonate, involving treating the natural calcium carbonate with a sulfate to produce a gypsum and reacting the gypsum with at least one carbonate source to produce precipitated calcium carbonate. The crystalline polymorph, particle size, and various other characteristics of the precipitated calcium carbonate are controlled by varying conditions during the reacting. Since the natural calcium carbonate is not calcined, the process relates to a low energy method of producing precipitated calcium carbonate of controlled polymorph and particle size with limestone, marble, or chalk as the calcium source.
Abstract:
A composition may include a base or matrix material, such as a resin, and a first optical brightener. The first optical brightener may include an alkaline earth metal compound and a fluorescence activator. The composition may include less than or equal to about 1.5 wt% of a second optical brightener relative to the weight of the composition, wherein the second optical brightener does not include the fluorescence activator. A composition may include an aqueous base and an optical brightener. The optical brightener may include an alkaline earth metal carbonate and a fluorescence activator, wherein the optical brightener is configured to emit fluorescent light. A composition may include a first optical brightener. The first optical brightener may include an alkaline earth compound, such as an alkaline earth metal salt, and a fluorescence activator, wherein, for a given brightness of a product including the composition, the composition including the first optical brightener may include less of a second optical brightener different from the first optical brightener.
Abstract:
A composition may include an aqueous base and at least one identifying additive. The at least one identifying additive may include an alkaline earth metal compound and a fluorescence activator. The at least one identifying additive may be configured such that the composition emits fluorescent light having an identifying characteristic different from a characteristic of a surface against which the identifying characteristic is viewed. A composition may include an aqueous base and at least one identifying additive including an alkaline earth metal compound and a fluorescence activator including at least one other inorganic element. The at least one identifying additive may be configured such that the composition emits fluorescent light having an identifying characteristic. A label or packaging for identifying at least one of an object and a source of the object may include a composition including at least one identifying additive associated with a surface associated with the label or packaging.
Abstract:
A process for converting gypsum into precipitated calcium carbonate including reacting a mixture comprising gypsum and a seed, a mineral acid, or both with at least one carbonate source, whereby precipitated calcium carbonate is produced in the form of calcite and/or aragonite directly without conversion from a vaterite polymorph. Also, a process for converting gypsum into precipitated calcium carbonate including providing a mixture comprising i) gypsum ii) a seed, a mineral acid, or both iii) at least one additive selected from the group consisting of ammonium sulfate, an organic acid, or an iron material, and reacting the mixture with at least one carbonate source to produce precipitated calcium carbonate in the form of vaterite. The precipitated calcium carbonates having desired and unique composition, polymorph and crystal size characteristics formed by these processes.
Abstract:
A process for converting gypsum into precipitated calcium carbonate including reacting a mixture comprising gypsum and a seed, a mineral acid, or both with at least one carbonate source, whereby precipitated calcium carbonate is produced in the form of calcite and/or aragonite directly without conversion from a vaterite polymorph. Also, a process for converting gypsum into precipitated calcium carbonate including providing a mixture comprising i) gypsum ii) a seed, a mineral acid, or both iii) at least one additive selected from the group consisting of ammonium sulfate, an organic acid, or an iron material, and reacting the mixture with at least one carbonate source to produce precipitated calcium carbonate in the form of vaterite.
Abstract:
A method of recycling carpet ash may include providing a carpet ash mud including greater than or equal to about 1 % of a feed hydroxide based on the total solids content, adding water to the carpet ash mud to form a diluted stream, and carbonating the diluted stream to form a carbonate. A method of precipitating a carbonate composition may include providing a feed stream including a carpet ash and water, adding a hydroxide to the feed stream, and carbonating the feed stream to produce a precipitated carbonate composition. A method for facilitating precipitation of a carbonate composition may include adding a hydroxide to a carpet ash mud, and carbonating the carpet ash mud and the hydroxide to produce a precipitated carbonate composition. A precipitated carbonate composition may have a brightness less than or equal to about 65.
Abstract:
A process for converting gypsum into precipitated calcium carbonate including reacting a mixture comprising gypsum and a seed, a mineral acid, or both with at least one carbonate source, whereby precipitated calcium carbonate is produced in the form of calcite and/or aragonite directly without conversion from a vaterite polymorph. Also, a process for converting gypsum into precipitated calcium carbonate including providing a mixture comprising i) gypsum ii) a seed, a mineral acid, or both iii) at least one additive selected from the group consisting of ammonium sulfate, an organic acid, or an iron material, and reacting the mixture with at least one carbonate source to produce precipitated calcium carbonate in the form of vaterite. The precipitated calcium carbonates having desired and unique compositions, polymorph and crystal size characteristics formed by these processes.