Abstract:
A wavelength conversion component for a light emitting device comprises at least one photoluminescence material; and a light scattering material. The light scattering material has an average particle size that is selected such that the light scattering material will scatter excitation light from a radiation source relatively more than the light scattering material will scatter light generated by the at least one photoluminescence material. Use of a light scattering material can reduce usage of the photoluminescence material and can improve an OFF state appearance of the component.
Abstract:
Disclosed are improved wavelength conversion components having photo-luminescent materials embedded into a hermetic material. Phosphor materials are embedded into a layer of glass, which is then utilized in a remote phosphor LED lighting apparatus. Methods for manufacturing these advanced wavelength conversion components are also described.
Abstract:
A solid-state lamp is described that includes a wavelength conversion component located at one end of the lamp. The solid-state lamp comprises: one or more solid-state light emitting devices (typically LEDs); a thermally conductive body; at least one duct; and a photoluminescence wavelength conversion component remote to the one or more LEDs, located at one end of the lamp. The lamp is configured such that the duct extends through the photoluminescence wavelength conversion component and defines a pathway for thermal airflow through the thermally conductive body to thereby provide cooling of the body and the one or more LEDs.
Abstract:
A solid-state linear lamp comprises a co-extruded component, the co-extruded component comprising an elongate lens and a layer of photoluminescent material. The elongate lens is for shaping light emitted from the lamp and comprises an elongate interior cavity. The layer of a photoluminescent material is located on an interior wall of the elongate interior cavity. The lamp further comprises an array of solid-state light emitters configured to emit light into the elongate interior cavity.
Abstract:
A light emitting sign comprising a light emitting display surface including at least one phosphor, and at least one radiation source configured to irradiate the display surface with excitation energy such that the phosphor emits light of a selected color. The sign further comprises a filter which is substantially transparent to light emitted by the display surface, filtering other colors of light. The display surface may be configured into a shape of a character, a symbol, or a device. Alternatively, a mask having at least one window substantially transparent to the emitted light and/or at least one light blocking region may be provided in which the window and/or light blocking region define a character, a symbol, or a device.
Abstract:
A wavelength conversion component for remote wavelength conversion is described in which a wavelength conversion layer is sandwiched between two light transmissive hermetic substrates. The light transmissive hermetic substrates form a barrier that protects the wavelength conversion layer from exposure to external environmental conditions. In some approaches, the wavelength conversion component further includes a sealant material disposed around an outer edge of the sandwich structure, where the sealant material hermetically seals an outer edge wavelength conversion layer.
Abstract:
A wavelength conversion component for a light emitting device comprising at least one light emitting solid-state light source includes a wavelength conversion layer comprising photo- luminescent material and a light transmissive thermally conductive substrate in thermal contact with a surface of the wavelength conversion layer.
Abstract:
A solid-state lamp is described that includes a first light emission zone and a second light emission zone, where the first light emission zone is longitudinally spaced apart from the second light emission zone. The light emission zones comprise a photoluminescence wavelength conversion component and a solid state light emitting device. The lamp comprises a lower body, a central body, and an upper duct, where the central body, and the upper duct together define at least one passage way/duct for thermal airflow.
Abstract:
A solid-state light emitting device comprises a solid-state light emitter (LED) operable to generate excitation light and a wavelength conversion component including a mixture of particles of a photoluminescence material and particles of a light reflective material. The phosphor absorbs at least a portion of the excitation light and emits light of a different color. The emission product of the device comprises the combined light generated by the LED and the phosphor. The wavelength conversion component can be light transmissive and comprise a light transmissive substrate on which the mixture of phosphor and reflective materials is provided as a layer or homogeneously distributed throughout the volume of the substrate. Alternatively the wavelength conversion component can be light reflective with the mixture of phosphor and light reflective materials being provided as a layer on the light reflective surface.
Abstract:
A color/color temperature tunable light emitting device comprises: an excitation source (LED) operable to generate light of a first wavelength range and a wavelength converting component comprising a phosphor material which is operable to convert at least a part of the light into light of a second wavelength range. Light emitted by the device comprises the combined light of the first and second wavelength ranges. The wavelength converting component has a wavelength converting property (phosphor material concentration per unit area) that varies spatially. The color of light generated by the source is tunable by relative movement of the wavelength converting component and excitation source such that the light of the first wavelength range is incident on a different part of the wavelength converting component and the generated light comprises different relative proportions of light of the first and second wavelength ranges.