Abstract:
A method and apparatus for neighbor discovery in a wireless communication system are disclosed. A neighbor seeking wireless transmit/receive unit (WTRU) may send a first beacon based on configuration information provided by the network. The neighbor WTRUs receive the first beacon and may send either a report to the network or send a second beacon to the neighbor seeking WTRU. The network may then provide neighbor WTRU information to the neighbor seeking WTRU. The neighbor discovery may be performed within a pre-defined group of WTRUs that is formed based on proximity to the WTRU and/or an attribute of the WTRU. The neighbor discovery procedure may be performed to find neighbor WTRUs in case where a WTRU fails to find any network. A neighbor list may be generated by the neighbor seeking WTRU by measuring reference signals transmitted by neighbor WTRUs on an uplink to the network.
Abstract:
Disclosed herein are measurement and interference avoidance for direct device-to-device (D2D) links. A method may be implemented by a wireless transmit/receive unit (WTRU). The method may include determining a sounding reference signal (SRS) to detect high interference and facilitate measurements on a link with another WTRU. The method may also include using the SRS on a direct link with another WTRU.
Abstract:
A method and apparatus are described for supporting a two-stage device-to-device (D2D) discovery using a D2D interworking function (IWF). A D2D IWF component may be configured to perform mapping between an application running on an application server and a third generation partnership project (3GPP) network, and provide a set of application programming interfaces (APIs) to allow discovery to be provided as a service to D2D applications. An application identifier may be mapped to a 3GPP identifier. Further, a method and apparatus are described for performing client-server discovery. A first wireless transmit/receive unit (WTRU) may be configured for a listen-only operation, and a second WTRU may be configured to transmit beacons. The first and second WTRUs may perform a radio access network (RAN) discovery procedure at an access stratum (AS) layer. A method and apparatus for performing charging for D2D service using a D2D IWF are also described.
Abstract:
A method and apparatus for mobility for device-to-device (D2D) communications is disclosed. A WTRU may store a proximity detection configuration that includes a measurement object corresponding to at least one discovery signal property, perform a proximity detection measurement to detect a discovery signal property, and then establish D2D communication. A radio resource control (RRC) Measurement Report may be received from a WTRU. Methods for D2D mobility procedures are also disclosed including mobility to or from a direct path, to or from a local path, to or from an infrastructure path, changing serving cell, and cell reselection. Other embodiments include: behavior upon mobility failure, radio link failure, and direct link failure. Security configuration and activation methods and apparatuses are also disclosed. Network methods for inter-eNB management are also disclosed. Finally, direct path proximity detection measurements and methods and apparatuses for triggering and establishing D2D sessions are disclosed.
Abstract:
A method and apparatus are described for maintaining communications over a bearer when at least one of two wireless transmit/receive units (WTRUs) transition to idle mode. In one case, a direct WTRU-to-WTRU bearer may be released in response to a first one of the WTRUs transitioning to idle mode. A second one of the WTRUs may send a first of a plurality of packets to the first WTRU via a default packet data network (PDN) connection or a default bearer towards the PDN connection. The first packet may have a destination Internet protocol (IP) address of the second WTRU and trigger paging to the first WTRU. The first WTRU may transition to connected mode in response to the paging. Other cases may release a portion of a bearer, rather than the entire bearer. A method and apparatus for initiating proximity service bearer establishment is also described.
Abstract:
Direct communication (radio cross link) between nodes (UEs) in advanced topology (LTE) applications. A method includes a first node (user equipment, UE) receiving a cross link grant specifying resources for use by at least the first node (UE) for transmission on the radio cross link (direct link). The first node also performs cross link scheduling per transmission time interval (TTI) within the resources specified in the cross link grant and transmits at least one packet to a second node (second UE) based on the cross link scheduling grant per TTI. In another embodiment, y wireless transmit/receive unit, WTRU (UE), adapted to discard stalled (stored) RLC protocol data units, PDUs, at a helper (assisting, supplemental) WTRU (UE) on the downlink is disclosed, wherein PDUs stored at a logical channel queue or buffer are discarded (dropped) if a discard time set expires. Additionally, a system is claimed in which pairs of WTRU (UEs) are adapted to negotiate a cross link (direct link) scheduling per transmission time interval, TTI, within the resources specified in a cross link grant.
Abstract:
A method and apparatus for controlling crosslink, XL, establishment are disclosed. In the method and apparatus, the XL (203) between a terminal wireless transmit/receive unit, T-WTRU, (201) and a helper WTRU, H-WTRU, (202) is controlled, whereby the T-WTRU (201) and the H-WTRU (202) may be in a radio resource control, RRC, Idle mode and may perform discontinuous reception, DRX. Further, the T-WTRU (201) may transition between infrastructure coverage mode and WTRU-to-WTRU, W2W coverage mode. Additionally, neighbor discovery and H-WTRU selection are performed and association between the T-WTRU (201) and H-WTRU (202) is established and maintained.
Abstract:
A method and apparatus for cross link (XL) establishment are disclosed. In the method and apparatus, a XL between a terminal wireless transmit/receive unit (T-WTRU) and a helper WTRU (H-WTRU) is established. The T-WTRU and the H-WTRU may be configured to operate in a plurality of RRC states and a plurality of RRC substates. To establish the XL, neighbor discovery, association information exchange, and a H-WTRU selection may be performed. Radio resource control (RRC) configuration of the T-WTRU and the H-WTRU may also be performed. In the method and apparatus, coverage for a T-WTRU may be handed over between a network and a H-WTRU or between two H-WTRUs.