Abstract:
The invention describes a low-power load arrangement (1) comprising a low-power load (3); a driver (2) for the low-power load (3); connectors (300) for connecting to an electronic transformer (2) realised for converting a mains power supply (4) to a power supply for a normal-power load (5); and a reverse current generating means (L P , SB) realised to provide a reverse current (I rev_LP , I rev_SB ) to sustain self-oscillation during operation of the electronic transformer (2), wherein the direction of current flow of the reverse current (I rev_LP , I rev_SB ) is opposite in direction to the output current of the electronic transformer (2). The invention further describes a lighting arrangement (1) comprising an electronic transformer (2) realised for converting a mains power supply (4) to a power supply for a normal-power load; a low-power load (3) connected to the electronic transformer (2), which low-power load (3) comprises a low-power light source (30); and wherein the lighting arrangement (1) comprises a reverse current generating means (L P , SB) realised to provide a reverse current (I rev_LP , I rev_SB ) to sustain transformer self-oscillation when the transformer (2) drives the low-power load (3), wherein the direction of current flow of the reverse current (I rev_LP , I rev_SB ) is opposite in direction to the output current of the electronic transformer (2). The invention also describes a method of driving a low-power load (3) with an electronic transformer (2) realised for driving a normal-power load (5).
Abstract:
Control circuits (1) bring power converters (4) in different modes in response to detection results. The power converters (4) exchange possibly rectified first voltage / current signals with electronic halogen transformers (2) and supply second voltage / current signals to light emitting diode circuits (5). The first current signals have, in different modes, different amplitudes. The different amplitudes have different constant values and/or different derivative values. As a result, the first current signal has become a relatively varying first current signal. Then, the halogen transformers (2) no longer experience problems that occur when smaller amounts of power need to be provided than designed to. The detections may comprise polarity detections of and/or zero-crossing detections in the first voltage signals. The halogen transformers (2) comprise self-oscillating switched mode power supplies designed to provide first amounts of power at their outputs. The light emitting diode circuits5) are designed to consume second amounts of power smaller than the first amounts.
Abstract:
The invention relates to a power converter stage (2) for providing power supply to a power converter controller (3), a power converter controller (3) for such power converter stage (2), a power converter (1) including such power converter stage (2) and such power converter controller (3), a method for providing power to a controller (3) of a power converter (1) and a software product for controlling a power converter (1). In order to provide for auxiliary power supply for control circuitry of a power converter (1) during all operation modes of the power converter (1) while avoiding additional costs involved with providing a dedicated control power supply fed from bus voltage, it is proposed that power stored in power storing means (4, 5) included in a power converter stage (2) or more generally in a power converter (1) are used for supply to the controller (3) even if the power converter is in stand-by mode, as a transfer of power between such power storing means (4,5) through a primary inductance (6) may be used for providing also for a power transfer to a secondary inductance (7), which then supplies the controller (3).