Abstract:
A cooling device (40) includes a heat exchanger (50), a first flow loop (52) connecting a cold sink (42, 44, 46) and the heat exchanger, and a second flow loop (54) connecting a hot sink (20) and the heat exchanger. A first passive one way valve (62) disposed on the first flow loop is oriented to allow flow in an allowed direction of flow (F 1 ) and to block flow in the opposite direction. A second passive one way valve (64) disposed on the second flow loop is oriented to allow flow in an allowed direction of flow (F 2 ) and to block flow in the opposite direction. The allowed directions of flow produce counter-flow in the heat exchanger. In an illustrative embodiment, the hot sink is comprises a cryogenic magnet coil (20) and the hot sink is a cold head (42, 44) and liquid helium tank (46).
Abstract:
A superconducting magnet system, including a cryostat, and a ride-through system for the superconducting magnet system include: one or more gravity-fed cooling tubes configured to have therein a cryogenic fluid; a first heat exchanger configured to transfer heat from the one or more gravity-fed cooling tubes to a cryocooler; a storage device having an input connected to the first heat exchanger and configured to receive and store a boiled-off gas from the first heat exchanger; and a thermal regenerator having an input connected to the output of the storage device.
Abstract:
An apparatus includes at least a first electrically conductive coil having at least first and second coil sections which are separated and spaced apart from each other, and a support structure disposed to support the first and second coil sections. The support structure, and an associated method of supporting the electrically conductive coil, maintain relative axial positions of the first and second coil sections to be fixed when the first electrically conductive coil is energized and de-energized, and allow each of the first and second coil sections to expand radially when energized.
Abstract:
An apparatus including a persistent current switch of a superconducting material which is electrically superconducting at a superconducting temperature and electrically resistive at a resistive mode temperature which is greater than the superconducting temperature. The apparatus further includes a first heat exchange element; a convective heat dissipation loop thermally coupling the persistent current switch to the first heat exchange element; a second heat exchange element spaced apart from the first heat exchange element; and a thermally conductive link thermally coupling the persistent current switch to the second heat exchange element. The first heat exchange element is disposed above the persistent current switch. The thermally conductive link may have a greater thermal conductivity at the superconducting temperature than at a second temperature which is greater than the superconducting temperature.
Abstract:
A superconducting magnet (10) includes a cryogenic container (22, 32) containing a superconducting magnet winding (20). A sealed electrical feedthrough (36) passes through the cryogenic container. A contactor (40) inside the cryogenic container has an actuator (42) and feedthrough-side and magnet-side electrical terminals (46, 47). A high temperature superconductor (HTS) lead (60) also disposed in the cryogenic container has a first end (62) electrically connected with the magnet-side electrical terminal of the contactor and a second end (64) electrically connected to the superconducting magnet winding. A first stage thermal station (52) thermally connected with the first end of the HTS lead has a temperature (T1) lower than the critical temperature (TC,HTS) of the HTS lead. A second stage thermal station (54) thermally connected with the second end of the HTS lead has a temperature (T2) lower than a critical temperature (TC) of the superconducting magnet winding (20).
Abstract:
An MRI system is provided with a refrigeration system that includes dual compressors that are coupled to a single coldhead that cools the liquid helium in the MRI system. Because the single coldhead receives the compressed refrigerant regardless of the compressor that is being used, the unacceptable cooling loss that would have occurred with redundant coldheads is avoided. By coupling two compressors to a single coldhead, continuous operation can be provided despite a failure of either compressor. The dual refrigeration system may comprise a water-cooled compressor and an air-cooled compressor to enhance MRI system reliability in the event of a failure of the primary compressor or the cooling water circulation system. Alternatively, two water-cooled compressors may be provided, each with its own independent water system. Check valves may be used to enable passive control of the refrigerant gas flow from either compressor to the coldhead, thereby further improving the reliability.
Abstract:
An apparatus includes: a getter material (310) disposed within a vacuum chamber (210) to absorb stray molecules within the vacuum chamber; a thermal mass (340) disposed adjacent the getter material and in thermal communication with the getter material; a cold station (312) disposed within the vacuum chamber above the thermal mass; and a convective cooling loop (310) connected between the thermal mass and the cold station and configured to convectively cool the thermal mass when the cold station is at a lower temperature than the thermal mass, and to thermally isolate the thermal mass from the cold station when the cold station is at a higher temperature than the thermal mass. The thermal mass may be water ice and may be thermally isolated from the walls of vacuum chamber by low loss support links (360, 362, 364) and/or thermal reflective shielding.