Abstract:
A first network node receives downlink signaling from a second network node in a first occasion, received on a first carrier in a first time slot, and a second occasion, which is received either on the first carrier in a second time slot after the first time slot or on a second carrier in the first time slot or the second time slot. A MAC control element (CE) in the downlink signaling received in the first and second occasions contain a first timing padding value and a second timing padding value, respectively. A predetermined time slot is equally indicated by the first time slot plus the first timing padding value as well as by the second time slot plus the second timing padding value. The first network node effects one or more configurations in the predetermined time slot responsive to receiving the downlink signaling in the first and second occasions.
Abstract:
Aspects of the disclosure provide a processing circuit in an electronic apparatus and a method to switch the electronic apparatus during an inter-system handover (HO) process from a source network system to a target network system. The processing circuit can include an inter-system HO signal processing module and a mapping module. The inter-system HO signal processing module can be configured to obtain a mapping relationship between a set of source bearers associated with the source network system and a first set of target bearers associated with the target network system based on quality of service (QoS) characteristics associated with the set of source bearers and the first set of target bearers. The mapping module can be configured to obtain a second set of target bearers based on resources allocated to the first set of target bearers by the target network system and to obtain a third set of target bearers that is based on the first and second set of target bearers.
Abstract:
Methods for LTE-WLAN interworking control and management are proposed. In one novel aspect, a terminal equipment (TE) can use an AT command to query the WLAN offloadability of a packet data network (PDN) connection. A mobile termination (MT) can store the WLAN offloadability indication in its memory and return the value to TE upon receiving the AT command. In one example, a new field can be added to an existing AT command.
Abstract:
Methods for LTE-WLAN interworking control and management are proposed. In one novel aspect, a mobile termination (MT) can use an AT command to report radio access network (RAN) assistance parameters of the current serving cell. A terminal equipment (TE) can use the AT command to query the specific RAN assistance parameters and the threshold value provided by the network for making LTE-WLAN interworking decisions. If reporting is enabled by TE, then an unsolicited result code (URC) is sent from MT to TE whenever changes in the current RAN assistance parameters occur.
Abstract:
Various solutions for data transmission enhancements with respect to user equipment (UE) and network apparatus in mobile communications are described. As a transmitter, a UE may determine whether specific information is comprised in a protocol data unit (PDU). The UE may mark the PDU in an event that the specific information is comprised in the PDU. The UE may further prioritize the marked PDU and deliver the marked PDU to a next protocol layer. As a receiver, a UE may receive a marked PDU comprising the specific information. The UE may deliver the marked PDU to a higher protocol layer out-of-order.
Abstract:
A method of adaptive transmission time interval (TTI) tuning based on TCP information is proposed. First, a procedure for TCP information delivery between eNB and TCP sender/TCP receiver is disclosed. The TCP information comprises TCP status, TCP congestion window (CWND) size, TCP round trip delay, TCP SS threshold, TCP index, and TCP event indication. Second, various methods for eNB to configure TTI with UE TCP information and/or buffer information are disclosed. A first method is saturation detection which includes buffer status based saturation detection and CWND based saturation detection. A second method is Greedy Buffer Clearing. A third method is TCP state based TTI selection method.
Abstract:
LTE-WLAN aggregation (LWA) at the radio access network level promises significant gain in system capacity and user quality of experience (QoE). In order to support QoS over LWA, there is a need to develop mechanisms to ensure that the access category (AC) classification chosen by a wireless device (AP in the case of downlink, and UE in case of uplink) is consistent with the QoS requirements of the EPS bearer/DRB and/or subscriber profile to which the traffic belongs. The cellular LTE network can provision QoS for both downlink and uplink data flows that are transferred using LWA access.
Abstract:
Apparatus and methods are provided for selection and data aggregation for the LWA. In one novel aspect, the UE connected with a first RAN receives a LWA assistance configuration and selects a second RAN based on the LWA assistance configuration. The UE aggregates data traffic from the first RAN and the selected second RAN. In one embodiment, the information request-and-response procedure is used, which allows the first RAN to query the UE about its second RAN association status. In another embodiment, the selection request-and-response procedure is used, which allows the first RAN to exercise some control over which base station of the second RAN is selected by the UE and for the UE to send relevant information about its second RAN connectivity to the first RAN. In another novel aspect, the UE selects a DRB based on the LWA DRB configuration through either a NAS procedure or an operator configuration.
Abstract:
In an aspect of the disclosure, an apparatus is provided. The apparatus receives a downlink data packet and determines a service data flow associated with the downlink data packet. The apparatus extracts, from the downlink data packet, a Non-Access Stratum (NAS) Reflective QoS Indication (RQI) indicator that instructs the UE to map a service data flow to the QoS flow. The apparatus further extracts, from the downlink data packet, a Quality of Service (QoS) flow identifier identifying a QoS flow. The apparatus generates a first NAS mapping that maps the service data flow to the QoS flow, in response to a determination that the service data flow is not mapped to the QoS flow at the apparatus. The apparatus further transmits, in accordance with the first NAS mapping, an uplink data packet associated with the service data flow through the QoS flow.
Abstract:
Apparatus and methods are provided for user-plane LWA PDU routing. In one novel aspect, LTE PDU packets are routed through a WLAN AP to a UE by encapsulation of the data packets. In one embodiment, a bridge/VLAN architecture is used. The UE identifies one or more Ethernet Frames received the WLAN interface as containing the PDCP PDUs by decoding the EtherType. In another embodiment, the WLAN terminated tunneling is used by decoding the EtherType of indicating the PDCP type. In another novel aspect, an UE-terminated tunneling is created. In one embodiment, the IP tunneling is used. In another embodiment, the GRE tunneling is used. The GRE header contains a KEY field to identify the packets as being the LWA packets. In yet another embodiment, the IPSec tunneling is used. The SPI of the header is used to identify the packets as being the LWA data packets.