Abstract:
A warped spectral estimate of an original audio signal can be used to encode a representation of a fine estimate of the original signal. The representation of the warped spectral estimate and the representation of the fine estimate can be sent to a speech recognition system. The representation of the warped spectral estimate can be passed to a speech recognition engine, where it may be used for speech recognition. The representation of the warped spectral estimate can also be used along with the representation of the fine estimate to reconstruct a representation of the original audio signal.
Abstract:
A method and apparatus determine a likelihood of a speech state based on an alternative sensor signal and an air conduction microphone signal. The likelihood of the speech state is used, together with the alternative sensor signal and the air conduction microphone signal, to estimate a clean speech value for a clean speech signal.
Abstract:
A method and apparatus determine a channel response for an alternative sensor using an alternative sensor signal, an air conduction microphone signal. The channel response and a prior probability distribution for clean speech values are then used to estimate a clean speech value.
Abstract:
Both speech and alternate modality inputs are used in inputting information spoken into a mobile device. The alternate modality inputs can be used to perform sequential commitment of words in a speech recognition result.
Abstract:
A method and apparatus are provided for determining uncertainty in noise reduction based on a parametric model of speech distortion. The method is first used to reduce noise in a noisy signal. In particular, noise is reduced (304) from a representation of a portion of a noisy signal to produce a representation of a cleaned signal by utilizing an acoustic environment model (413). The uncertainty associated with the noise reduction process is then computed. In one embodiment, the uncertainty of the noise reduction process is used, in conjunction with the noise-reduced signal, to decode (306) a pattern state.
Abstract:
Described is the use of acoustic data to improve grapheme-to-phoneme conversion for speech recognition, such as to more accurately recognize spoken names in a voice-dialing system. A joint model of acoustics and graphonemes (acoustic data, phonemes sequences, grapheme sequences and an alignment between phoneme sequences and grapheme sequences) is described, as is retraining by maximum likelihood training and discriminative training in adapting graphoneme model parameters using acoustic data. Also described is the unsupervised collection of grapheme labels for received acoustic data, thereby automatically obtaining a substantial number of actual samples that may be used in retraining. Speech input that does not meet a confidence threshold may be filtered out so as to not be used by the retrained model.
Abstract:
An index for searching spoken documents having speech data and text meta-data is created by obtaining probabilities of occurrence of words and positional information of the words of the speech data and combining it with at least positional information of the words in the text meta-data. A single index can be created because the speech data and the text meta-data are treated the same and considered only different categories .
Abstract:
A speech segment is indexed by identifying at least two alternative word sequences for the speech segment. For each word in the alternative sequences, information is placed in an entry for the word in the index. Speech units are eliminated from entries in the index based on a comparison of a probability that the word appears in the speech segment and a threshold value.
Abstract:
A novel system integrates speech recognition and semantic classification, so that acoustic scores in a speech recognizer that accepts spoken utterances may be taken into account when training both language models and semantic classification models. For example, a joint association score may be defined that is indicative of a correspondence of a semantic class and a word sequence for an acoustic signal. The joint association score may incorporate parameters such as weighting parameters for signal-to-class modeling of the acoustic signal, language model parameters and scores, and acoustic model parameters and scores. The parameters may be revised to raise the joint association score of a target word sequence with a target semantic class relative to the joint association score of a competitor word sequence with the target semantic class. The parameters may be designed so that the semantic classification errors in the training data are minimized.