Abstract:
Techniques are disclosed relating to signaling and frame structure for massive MIMO communication systems. In some embodiments, an apparatus (102) is configured to receive an uplink pilot symbol from a mobile device (106) over a first channel (UL) and receive uplink data from the mobile device over the first channel, where the uplink data is included in one or more orthogonal frequency division multiplexing (OFDM) symbols at a symbol rate. In these embodiments, the apparatus is configured to, determine channel information based on the pilot symbol, precode downlink data based on the channel information, and transmit the precoded downlink data to the mobile device. In these embodiments, a transition interval between receiving the uplink pilot symbol and beginning to transmit the precoded downlink data corresponds to less than five OFDM symbols at the symbol rate. This may facilitate reciprocity-based precoding for fast-moving mobile devices, in some embodiments.
Abstract:
Techniques are disclosed relating to synchronization of radios in a large antenna count (LAC) system. In some embodiments, a LAC system includes a plurality of slave radios, a clock and trigger distribution system, and a master device. In these embodiments, the plurality of slave radios are configured to establish a fixed relationship between a reference clock and their respective local clocks. In these embodiments, the master device and plurality of slave radios are configured to generate and align respective common periodic time reference (CPTR) signals, at a lower frequency than the local clocks. In these embodiments, the master device is configured to transmit a trigger signal based on its CPTR and the plurality of slave radios are configured to perform an action based on the trigger at a subsequent edge of their CPTRs. This may allow synchronization of sampling for antennas in a massive MIMO base station, for example. In some embodiments the master device a radio and includes a local clock, is configured to establish and maintain a fixed relationship between a reference clock and its local clock, and is configured to perform an action based on the trigger at the subsequent edge of its CPTR.
Abstract:
Techniques are disclosed relating to massive MIMO communications. In some embodiments, a base station is configured to dynamically adjust the number of processing elements used for MIMO signal estimation (e.g., the number of MIMO RX chains used for parallel processing). In some embodiments, the number of processing elements may be based on the number of antennas currently being used, the number of spatial streams, interconnect throughput thresholds, sampling rate, etc. In some embodiments, the base station includes configurable MIMO cores configured to dynamically switch between MIMO signal estimation techniques, e.g., on a per-symbol basis. In some embodiments, the base station includes configurable linear decoders configured to separately multiply input matrices and combine or refrain from combining the results based on the number of antennas and/or processing elements currently in use.
Abstract:
Techniques are disclosed relating to a massive MIMO base station architecture. In some embodiments, a base station is configured to combine signals received by multiple antennas and, for at least a subset of processing elements included in the base station, each processing element is configured to operate on a different portion of the combined signals. In these embodiments, each portion includes signals from multiple antennas. In some embodiments, the portions are different time and/or frequency portions of the combined signals. In some embodiments, this distributed processing may allow the number of antennas of the base station to scale dramatically, provide dynamic re-configurability, facilitate real-time reciprocity-based precoding, etc.