Abstract:
An inhaler (10) for the inhalation of inhalable substances comprise: a canister (50) having an interior reservoir (84) containing pressurised inhalable substances including fluid; a metering valve (52) including a metering chamber (82) and a valve stem (54) defining a communication path between the metering chamber and the interior reservoir, the communication path (86) including an opening (106) configured to permit flow between a transfer space inside the valve stem and the interior reservoir, the interior reservoir being arranged for orientation above the metering chamber whereby gas such as air located within the metering chamber is replaced with liquid from the interior reservoir.
Abstract:
Disclosed herein is a quality control method for predicting premature degradation in mechanical properties of a series of moulded plastics components, the moulded plastics components being formed from a batch mixture comprising a cross-linkable polymer and a peroxide cross-linking agent. The method comprises selecting a subset of the series of moulded plastics components and obtaining a material specimen from the subset; and then extracting and measuring a residual peroxide content of the specimen. According to the invention,the measured residual peroxide content is representative of a probability of the premature age-related degradation in the entire series of moulded plastics components, and may therefore be compared against a threshold residual peroxide content to determine whether the entire series of components is of acceptable quality.
Abstract:
An inhaler (10) has a main body for accommodating a medicament reservoir (84), a canister fire system for moving a canister (50) to release a dose in response to air flow, a cap housing (12) for enclosing the canister fire system and canister within an interior chamber defined by the main body (14) and a cap housing, wherein a lock system (250) is provided for locking the cap housing on the main body.
Abstract:
An inhaler includes a mouthpiece cover, a pressure sensor, a first indicator and a second indicator. The first indicator may be configured to indicate based on a state of the cover, and the second indicator may be configured to indicate based on an output of the pressure sensor. For example, when the mouthpiece cover opens, the first indicator may illuminate and a dose of medication may be transferred from a reservoir to a dosing cup. The second indicator may illuminate if an amount of inhaled medication reaches a predetermined threshold for successful inhalat ion.
Abstract:
Provided is a blister pack for a dry powder inhaler, which dry powder inhaler is configured to deliver a first powder medicament and a second powder medicament different from the first powder medicament. The first and second powder medicaments are contained within blister pockets (12A, 12B) defined in a strip (10). A series (11) of blister pockets is defined in the strip, which series extends linearly along the length of the strip. The first and second powder medicaments are contained in blister pockets, e.g. respective blister pockets, of the series. Alternatively or additionally, each of the blister pockets is elongated such as to have a largest dimension (20) parallel with the length of the strip. These measures, either individually or in combination, enable minimizing of the width of the strip in spite of the strip accommodating both the first and second powder medicaments. This, in turn, may enable the depth/thickness of the dry powder inhaler to be minimized, and/or additional space to be provided inside the dry powder inhaler for accommodating, for example, use detection and wireless connectivity electronics for sending use detection data to an external device, such as a smartphone.
Abstract:
A fluid dispensing apparatus (2), comprising a body (4), said body having an orifice (8) configured to allow the fluid to be dispensed from the apparatus, wherein the orifice has been formed by machining and a method of manufacturing thereof.
Abstract:
A compliance monitoring module for an inhaler comprising : a miniature pressure sensor, a sensor port of said sensor being configured to be pneumatically coupled to a flow channel of said inhaler through which a user can inhale; a processor configured to : receive data from a sensing element of the pressure sensor; receive data from a mode sensor configured to detect when the inhaler changes from an inactive mode to an active mode; and based on said data from said pressure sensor sensing element and said data from said mode sensor, compile a compliance report; and a transmitter configured to issue said compliance report.
Abstract:
A system may include an external device and an inhaler. The external device may include a processor, a communication circuit, and memory. The inhaler may include a mouthpiece, medicament, a mechanical dose counter, and an electronics module comprising a processor and a communication circuit. The electronics module may record a dosing event when the inhaler is actuated, such as when the mouthpiece cover is opened, and send a signal indicating the dosing event to the external device. The external device may receive a mechanical dose reading of the mechanical dose counter, determine an electronic dose reading based on the signal indicating the dosing event, determine that a discrepancy between the mechanical dose reading and the electronic dose reading exceeds a threshold, and notify the user of the discrepancy, for example, by providing a notification to the user by way of a mobile application residing on the external device.
Abstract:
An inhaler housing (14) for an inhaler (10) for inhaling inhalable substances, the inhaler having: a body (14) and a dose counter (24) with a return spring (28), wherein a distinct guide surface (162) is provided for guiding the end of the return spring into a recess (152), the distinct guide surface being wider than an entrance mouth (160) of the recess, a dose counter chamber (22) being provided which is separated from a tubular interior space (182) of the inhaler by a barrier (180), the barrier including a stepped upper wall area (184) including at least three steps (186, 188, 190, 192) at different levels, the inhaler having a valve stem block (62) having an inner bore and a valve stem block having a seal (224) in the inner bore with a second diameter which is smaller than a first diameter of the inner bore, the inhaler having a canister (150) being adapted to move during operation between 1 and 4 mm, a drive being arranged to apply a firing force of between 15N and 60N of force to the canister at a position of the canister relative to a valve stem (54) at which the canister fires.
Abstract:
The introduction of electronics into a drug deliver device may introduce certain technical challenges, such as durability, electro-mechanical integration, and drug delivery performance. The present disclosure provides solutions for inclusion of an electronics module with an inhaler. For example, heat stakes may be used to secure a printed circuit board (PCB) to an electronics module's housing. Also for example, a slider may be used to transfer vertical movement of an inhaler's yoke to an electronics module's switch. Also for example, certain seals may be used when interfacing the electronics module to other portions of the device's housing to achieve a desired performance.