Abstract:
An elevator load bearing member (30) monitoring device includes a controller (42) that applies a selected electrical signal to tension members (32) of the load bearing member (30). In one example, connectors (40) are associated with ends of the load bearing member (30) to establish an electrical interface between the controller (42) and the tension members (32). The connectors (40) facilitate establishing electrical circuit loops along the tension members (32) such that only non-adjacent tension members are energized at a selected time. A variety of circuit configurations are disclosed. The applied electrical signal in one example has a potential that is negative compared to a ground potential of a hoistway in which the elevator belt is used. In another example, the electrical signal comprises a plurality of pulses and has a duty cycle that is on the order of about one percent.
Abstract:
An elevator sheave (20) includes a belt guiding surface (26) having a surface profile along at least a portion of the belt guiding surface. The surface profile preferably is defined by an n th order polynomial equation where n is a number greater than 2. In one example, the reference point (40) is a central point along the width of the belt guiding surface (26). In one example, a central portion (42) of the surface profile preferably is aligned to be generally parallel with the central axis (34) of the sheave body. Some examples have curvilinear side portions (44, 46) between the central portion (42) and the edges (28, 30) of the sheave. Other examples also include second side portions (48, 50) that have linear profiles.
Abstract:
A system (100) and method monitoring the health of a support structure (104) for an elevator (102) based on an electrical characteristic (110), such as resistance, of the support structure and not the temperature(108) of the structure. The resistance of a virgin support structure (104) under the same temperature conditions as the support structure (104) being monitored is calculated (204) and subtracted from the measured resistance of the monitored support structure (104). The resistance value of the virgin support structure and the monitored support structure may be translated (112) to a reference temperature to simplify calculations and monitoring of the support structure.
Abstract:
An electrical connector device (40) for use with an elevator load bearing member (30) assembly includes at least one electrical connector member (42) for making electrically conductive contact with at least one tension member (32). A clamping member (45) supports the electrical connector member and facilitates manipulating the connector member to pierce through a coating (34) over the tension members (32). The clamping member (45) in one example has first (46) and second (48) portions received on opposite sides of the load bearing member (30). An adjuster (50) facilitates adjusting the relative positions of the clamping member portions to urge the electrical connector member through the coating and into electrically conductive contact with the tension member.
Abstract:
A method and system for detecting or measuring defects in a rope having ferromagnetic tension members includes a magnetic field exciter and an array of magnetic flux sensors corresponding to the tension members in a known relationship. Measurements of magnetic flux leakage are indicative of defects. Another aspect of the invention includes a method and system for detecting or measuring defects in an elevator rope having electrically conductive tension members, whereby measured electrical resistance in the tension members is indicative of defects.