Abstract:
Disclosed is a concentrator that can track the position of the sun, concentrates solar energy radiation in a focal point zone (4), and comprises reflectors (1) which are fixedly oriented relative to one another. In order to reflect the sunbeams using the reflectors, a plurality of reflecting outer surfaces (1a) is arranged in such a way that the outer surfaces are at least partially located inside each other and concentric to each other at least approximately in the shape of truncated cones or segments of truncated cones having different inclinations, resulting in the sunbeams being focused on a significantly smaller surface, namely the focal point zone (4), after being reflected.
Abstract:
The invention relates to a concept of solar power plants comprising parabolic troughs (1) and a counter parabolic mirror (2), which concentrates the sun rays once again and lets the sun rays fall through the lowest point of the parabolic trough (1) onto the surface (10.1) of a cavity, where the swivel axis (9) for the tracking of the parabolic trough lies and where the solar radiation is converted into heat and the heat is stored directly in a heat accumulator (3) at a high temperature level (1000 °C). The temperature front in the heat accumulator (3) extends across the entire volume and heats the mass of the heat accumulator (3). The heat accumulator (3) is insulated on all sides. Reinforced evaporation pipes (4) made of heat-resistant steel are cast into the heat accumulator and filled with a ball packing (5). If water is distributed onto the ball packing (5) in order to retrieve the heat, the water evaporates abruptly. The water vapor is collected in a container (39) and is then conducted into a turbine (30) for decompression. The heat of evaporation from the turbine (30) is transferred to a heating circuit (35), and three cycles (II, III, IV) are operated with a mixture of two substances by means of said energy. The energy decoupling from the heat accumulator (3) occurs down to a low temperature (100 °C).