Abstract:
A geocell is disclosed that has high strength and stiffness, such that the geocell has a storage modulus of 500 MPa or greater at 23°C; a storage modulus of 150 MPa or greater at 630C when measured in the machine direction using Dynamic Mechanical Analysis (DMA) at a frequency of 1 Hz; a tensile stress at 12% strain of 14.5 MPa or greater at 230C; a coefficient of thermal expansion of 120 x 10'6 /0C or less at 250C, and/or a long term design stress of 2.6 MPa or greater. The geocell is suitable for load support applications, especially for reinforcing base courses and/or subbases of roads, pavement, storage areas, and railways.
Abstract:
Geocells for moderate to low load applications are disclosed here. The geocells have a cell wall thickness of from 0.25 mm to 0.95 mm. They have a wall strength of from 3500 N/m to 15000 N/m.
Abstract:
The present invention discloses cellular confinement systems (CCSs) with improved friction with infill at low normal pressure. The invention especially presents novel flaps-containing CCS that includes inter alia a plurality of elongated strips arranged in a side by side pattern, each of the strip is segmentally bonded to an adjacent strip in spaced-apart bonding areas, said bonding areas alternating between the sides of each of said strips, such that when the system is stretched across its width, the strips curl to form a web of cells confined by cell walls disposed between the bonding areas, wherein at least one of the cell walls comprises at least one flap hinged to the wall and friction between the walls and the infill material increases.
Abstract:
A perforated geocell is made from a plurality of strips that form cells. Each cell wall has a single pattern of perforations spaced evenly over the cell wall. This avoids uneven distributions of stress over the cell wall, reducing deformation of the geocell.
Abstract:
Geocells are disclosed herein that are made from polymeric strips having improved compaction and deformation resistance. The compaction resistance refers to the deformation of the geocell during installation, when the geocell is being infilled. The deformation resistance refers to the deformation of the geocell during service, which is simulated using procedures described herein.