Abstract:
Techniques to perform channel estimation with pilot weighting are described (Fig 5B). A receiver receives at least one transmission symbol for a pilot transmitted by a transmitter. Each transmission symbol may be generated with a single-carrier multiplexing scheme (e.g., IFDMA or LFDMA) or a multi-carrier multiplexing scheme (e.g., OFDMA). The receiver processes each received transmission symbol and obtains received pilot values (562). The receiver may derive an interference estimate based on the received pilot values and may estimate the reliability of the received pilot values based on the interference estimate (564). The receiver determines weights for the received pilot values based on the transmitted pilot values, the estimated reliability of the received pilot values, and/or other information (568). The receiver derives a channel estimate based on the received pilot values and the weights (570). The receiver then performs data detection (e.g., equalization) on received data values with the channel estimate (572).
Abstract:
Pilot symbols transmitted from different sectors of a same base station are multiplied with a same cell specific scrambling code and a first code having low cross correlation and second codes having low cross correlation. The second code is constant over the length of the first code, but may vary for repetitions of the first code.
Abstract:
Certain aspects of the present disclosure generally provide methods and apparatus for enhanced discovery procedures in peer-to-peer (P2P) wireless local area networks (WLANs). With these procedures, discovery duration may be decreased, battery power consumption may be reduced during discovery, provided services may be ascertained during the device discovery phase without performing a separate service discovery phase, and/or the discovery range may be extended in an effort to discover a greater number of devices.
Abstract:
Techniques for centralized control of peer discovery pilot transmission are described. In an aspect, a designated network entity (e.g., a base station or a network controller) may control transmission of peer discovery pilots by stations located within its coverage area. In one design, the network entity may receive signaling triggering peer discovery pilot transmission. The network entity may direct each of at least one station to transmit a peer discovery pilot to allow one or more stations to detect the at least one station. The peer discovery pilot may include at least one synchronization signal or at least one reference signal. The network entity may receive pilot measurements from the one or more stations for peer discovery pilots from peer stations and/or reference signals from base stations. The network entity may determine whether or not to select peer-to-peer communication for two stations based on the pilot measurements.
Abstract:
Systems and methodologies are described that facilitate transmitting control information in wireless networks. Portions of bandwidth can be blanked for transmitting control information, and the control information transmitters can utilize beacon symbols to convey the control information. In this regard, interference is mitigated with respect to data transmissions over the control information bandwidth. Selected frequencies of the beacon symbols in a codeword can be used to indicate the control information. The codewords can be encoded with an error control code to provide redundancy for decoding in the presence of some interference.
Abstract:
Techniques for sending signaling information using hierarchical coding are described. With hierarchical coding, individual messages for users are encoded using multiple interconnected encoders such that (1) the message for each user is sent at a data rate suitable for that user and (2) a single multicast message is generated for the messages for all users. A base station determines data rates supported by the users and the code rates to achieve these data rates. Each data rate is determined by one or more code rates. Signaling information for the users is mapped to data blocks to be sent at different data rates. Each data block is then encoded in accordance with the code rate(s) associated with the data rate for that data block. A final coded block is generated for all users and transmitted. Each user performs the complementary decoding to recover the message sent to that user.
Abstract:
Various operations may be performed based on a distance-related function associated with two or more devices. For example, an association procedure for two or more devices may be based on one or more determined distances. Similarly, presence management may be based on one or more determined distances. A distance-related function may take various form including, for example, a distance between devices, two or more distances between devices, a rate of change in a relative distance between devices, relative acceleration between devices, or some combination of two or more of the these distance-related functions.
Abstract:
Systems and methodologies are described that facilitate providing auxiliary multiple-input, multiple-output (MIMO) pilot signals to MIMO user devices in a wireless communication environment. According to some aspects, a portion of data transmission power may be reallocated for auxiliary MIMO pilot transmission during a data segment in a time slot, in order to permit a MIMO user device to perform CQI and rank prediction. Additionally or alternatively, non-MIMO pilot transmission power may be reallocated in a pilot segment in the time slot for transmission of an auxiliary MIMO pilot signal to permit the MIMO user device to demodulate data transmitted in data segments of the time slot. MIMO pilot signals may additionally be time-division multiplexed within or across time slots and may be transmitted over available Walsh codes in data and control segments.
Abstract:
A quick paging channel in a random access wireless communication system includes at least one bit in a quick paging frame identifying the presence of a paging message for an access terminal or group of access terminals. The quick paging bits identifying the presence of a paging message for a first access terminal is encoded with one or more quick paging bits corresponding to one or more additional access terminals to produce one or more forward error correction bits. The jointly encoded quick paging bits are broadcast to the access terminals by time division multiplexing the quick paging frame with additional frames of information. The paging block can also be compressed. OFDM can be used to transmit the encoded paging block.
Abstract:
Systems and methodologies are described that facilitate reducing rank (e.g., of a user device) as a number of transmissions there from increases. Such rank step-down can improve interference resistance and facilitate maintaining code rate despite transmission propagation. Additionally, rank step-down information can be encoded along with CQI information to generate a 5-bit CQI signal that can facilitate updating a user's rank upon each CQI transmission (e.g., approximately every 5 ms). The described systems and/or methods can be employed in a single code word (SCW) wireless communication environment with a hybrid automatic request (HARQ) protocol.