Abstract:
The disclosure is directed to a receiver. The receiver includes an interference canceller configured to filter digital samples produced from a modulated signal transmitted over a wireless channel, and a digital variable gain amplifier (DVGA) configured to amplify the filtered digital samples.
Abstract:
Techniques for performing automatic gain control are described. In some aspects, the gain control is achieved with an apparatus having an analog-to-digital converter (ADC) and a digital variable gain amplifier (DVGA), the DVGA configured to receive a digital signal from the ADC, the DVGA having a processor configured to compute a gain using a base n logarithm based on the power of the digital signal output from the ADC, the processor being further configured to apply the gain to the digital signal.
Abstract:
Techniques for performing frequency control in an OFDM system are described. In one aspect, frequency acquisition is performed based on a received pilot, and frequency tracking is performed based on received OFDM symbols. For frequency acquisition, an initial frequency error estimate may be derived based on the received pilot, and an automatic frequency control (AFC) loop may be initialized with the initial frequency error estimate. For frequency tracking, a frequency error estimate may be derived for each received OFDM symbol, and the AFC loop may be updated with the frequency error estimate. Frequency error in input samples is corrected by the AFC loop with the initial frequency error estimate as well as the frequency error estimate for each received OFDM symbol. In another aspect, a variable number of samples of a received OFDM symbol are selected, e.g., based on the received OFDM symbol timing, for use for frequency error estimation.
Abstract:
The disclosure is directed to a mobile communication device that includes automatic gain control (AGC) circuitry and operates in either a tracking mode or an acquisition mode. A received signal is sampled n times to calculate an energy estimate that is used to set the gain control values within the AGC circuitry. The value of n varies depending on whether the handset is operating in the acquisition mode or the tracking mode. Acquisition mode is typically considered to be the mode prior to coarse timing acquisition, also referred to as frame acquisition.
Abstract:
A control of an amplifier in an automatic gain control (AGC) loop, e.g. in the RF front end circuitry of an OFDM receiver, provides phase adjustment control data to an associated automatic frequency control (AFC), to compensate for a phase jump that would otherwise be caused by switching of the AGC gain between discrete gain states. In the disclosed example, for each gain state, comparators detect a signal energy estimate crossing either a high threshold or a low threshold. Upon threshold crossing, multiplexers select compensation data corresponding to the necessary transition from the prior state to the new state determined by the comparators, based on identification of the prior state and on the particular threshold that has been crossed (high or low). The phase compensation data supplied to the AFC, for one interval corresponding to the timing of the gain switching, adjusts phase rotation implemented in the AFC.
Abstract:
A method for synchronizing timing of a receiver to a received orthogonal frequency division multiplexing (OFDM) signal is disclosed. A first timing acquisition is performed with a first received time division multiplexed (TDM) pilot to determine a course timing estimate of the received OFDM signal. A second timing acquisition is performed with a second TDM pilot to determine a fine timing estimate for a OFDM symbol of the received OFDM signal. In the second timing acquisition, the accumulated energy of channel taps over a detection window is determined and a trailing edge of the accumulated energy curve is detected. A Fourier transform (FT) collection window location for subsequent OFDM symbols is adjusted according to the trailing edge information.
Abstract:
Systems and methods are directed to instruction execution in a computer system having an out of order instruction picker, which are typically used in computing systems capable of executing multiple instructions in parallel. Such systems are typically block based and multiple instructions are grouped in execution units such as Reservation Station (RSV) Arrays. If an event, such as an exception, page fault, or similar event occurs, the block may have to be swapped out, that is removed from execution, until the event clears. Typically when the event clears the block is brought back to be executed, but typically will be assigned a different RSV Array and re-executed from the beginning of the block. Tagging instructions that may cause such events and then untagging them, by resetting the tag, once they have executed can eliminate much of the typical unnecessary re-execution of instructions.
Abstract:
An improved receiver apparatus and acquisition algorithm using TDM pilots is disclosed. The timing acquisition method presented provides capabilities for adapting to changing channel conditions, in particular varying expected delay spreads. The information on an expected delay spread can be fed back to the initial acquisition algorithm based on previous successful attempts, and the delay spreads measured at that time, such as to set the length of the detection window used to in the TDM pilot processing. Based on the delay spread information, the algorithm for processing the specialized TDM pilot can adaptively modify the timing acquisition parameters for more robust performance under interference conditions. This may involve reducing the length of the detection window to just a little more than or equal to the maximum expected delay spread, which reduces sensitivity of the fine timing acquisition to signal noise.
Abstract:
Methods and apparatus for power measurement in a communication system. In an aspect, a method is provided for power measurement. The method includes selecting between a signal decoding mode and a power measurement mode, decoding an input signal if the signal decoding mode is selected, and calculating a power measurement associated with the input signal if the power measurement mode is selected. In another aspect, an apparatus is provided for power measurement. The apparatus includes means for selecting between an active mode and a power measurement mode, means for decoding an input signal if the active mode is selected, and means for calculating a power measurement associated with the input signal if the power measurement mode is selected.
Abstract:
The disclosure is directed to a mobile communication device that includes automatic gain control (AGC) circuitry. Every n samples of the broadcast signals, an energy estimate of the AGC output signal is used to calculate and update a gain control value. Instead of using all n samples occurring subsequent to a previous gain control value update, only a subset of those n samples are used. In particular the first half of the n samples may be discarded in the energy estimate calculation while only the second half of the n samples may be used.