Abstract:
The present disclosure relates to aerosol delivery devices (100,800), methods of forming such devices, and elements of such devices. In some embodiments, the present disclosure provides atomizers and elements thereof, such as a combined wick (236/336/836) and heater (234/334/834) configured to improve vaporization response time, particularly on porous, monolithic wicks (236/336/836). The wick (236/836) can have a tapered end (236b) that engages the interior of a substantially basket-shaped wire heater coil. The heater (234/334/834) also may be in the form of a conductive mesh that is present on a portion of the wick (236/336/836).
Abstract:
The present disclosure relates to an aerosol delivery device (10) that includes a reservoir housing (200) that defines a mouthpiece channel. The aerosol delivery device includes a sealing member configured to be received within the reservoir housing to define a reservoir chamber configured to retain an aerosol precursor composition therein. The aerosol delivery device also includes a substrate member that is configured to be received within the reservoir housing and to be directly engaged with a vaporizing assembly (300) for forming an aerosol. The reservoir housing, sealing member, substrate member, and/or vaporizing assembly can be used for forming aerosols with precise and reproducible compositions.
Abstract:
The present disclosure relates to aerosol delivery devices and related methods of delivering aerosol to a user. The aerosol delivery devices may include a housing providing multiple aerosol pathways having a mouth-end opening through which aerosol can be inhaled by a user, the housing defining a first aerosol delivery pathway in fluid communication with the mouth-end opening and a second aerosol delivery pathway separate from the first aerosol delivery pathway and in fluid communication with the mouth-end opening. An atomizer including a heating element or piezoelectric element and a liquid transport element in fluid communication with an aerosol precursor composition is provided in fluid communication with the first aerosol delivery pathway. A flavorant-infused material is positioned within the second aerosol delivery pathway and adapted to produce a second aerosol upon contact between the flavorant-infused material and flowing air.
Abstract:
A smoking article and a method for making a smoking article are provided. The smoking article includes an aerosol-generating element configured to produce an aerosol in response to heat, a housing defining a cavity configured to receive the aerosol-generating element therein, a heating element engaged with the housing and configured to provide heat to the aerosol-generating element, a power source in electrical communication with the heating element and configured to provide electrical energy thereto, the heating element producing heat in response to the electrical energy, an aerosol-generating element identification device configured to identify an attribute of the aerosol-generating element, and a control device in communication with the aerosol-generating element identification device and configured to modulate the electrical energy provided to the heating element by the power source to direct the heating element to heat the aerosol-generating element to an aerosolization temperature associated with the identified attribute of the aerosol-generating element.
Abstract:
The present disclosure relates to aerosol delivery devices, methods of forming such devices, and elements of such devices. In some embodiments, the present disclosure provides devices configured for vaporization of an aerosol precursor composition through radiant heating. The radiant heat source may be a laser diode or further element suitable for providing electromagnetic radiation, and heating may be carried out within an optional chamber, which can be a radiation-trapping chamber. In some embodiments, an interior of such chamber may be configured as a black body or as a white body.
Abstract:
Smoking articles are disclosed herein. In one aspect, a smoking article includes a heat source configured to generate heat upon ignition thereof, a first substrate material having an aerosol precursor composition associated therewith and a first end being fixedly engaged with the heat source, and an aerosol delivery component having opposed first and second ends, the first end of the aerosol delivery component being engaged with the second end of the first substrate material. In some aspects, the aerosol delivery component includes a second substrate material having the aerosol precursor composition associated therewith and being disposed about the first end of the aerosol delivery component and a tobacco material disposed between the second substrate material and the mouthpiece, the aerosol precursor composition associated with the first and second substrate materials being configured to produce an aerosol in response to the heat generated by the ignited heat source.
Abstract:
The present disclosure relates to aerosol delivery devices, methods of forming such devices, and elements of such devices. In some embodiments, the present disclosure provides atomizers and elements thereof, such as a combined wick and heater configured to improve vaporization response time, particularly on porous, monolithic wicks. The wick can have a tapered end that engages the interior of a substantially basket-shaped wire heater coil. The heater also may be in the form of a conductive mesh that is present on a portion of the wick.
Abstract:
The present disclosure relates to an aerosol delivery device and a related method. The aerosol delivery device includes a heating chamber having an aerosol precursor composition disposed therein. A microwave radiation emitting device is operably engaged with the heating chamber and is configured to heat the aerosol precursor composition therein with the microwave radiation to form an aerosol from the aerosol precursor composition. An outlet port is formed in a housing of the aerosol delivery device and is in fluid communication with the heating chamber. The heating chamber is responsive to a suction applied to the outlet port for the aerosol to be drawn through the outlet port outwardly from the housing.
Abstract:
The present disclosure provides an electronic smoking article including components adapted for retaining an aerosol precursor composition. The electronic smoking article can comprise a shell having a reservoir housing therein. The reservoir housing can be adapted for enclosing an aerosol precursor composition and can comprise one or more apertures through which a liquid transport element may extend out of and into an interior space within the reservoir housing. The electronic smoking article further can comprise a heating element in heating communication with the liquid transport element. The disclosure also provides a method for forming a reservoir for an electronic smoking article.
Abstract:
The present disclosure provides temperature regulating sleeves for use with smoking articles. In some embodiments, temperature regulating sleeves may include various components including an outer shell, an inner chamber at least partially defined within the outer shell and configured to receive at least a portion of a smoking article, an opening through the outer shell configured for egress of an aerosol therethrough, a power source positioned within the outer shell, at least one control component positioned within the outer shell, one or more sensors positioned in communication with the inner chamber, and one or more ventilation components positioned in communication with the inner chamber. In some embodiments, temperature regulating sleeves according to the disclosure may be capable of effecting an automatic adjustment of at least a temperature of at least a portion of a smoking article used therewith.