Abstract:
A catoptric, wide-angle optical system includes at least three mirrors. Only the last mirror on the beam path (22) has a positive optical power and all other mirrors have negative optical power. The sum of the optical powers of the mirrors is zero. An external posterior aperture stop (35) is located on the beam path (22) between the last mirror and the image plane (24). The back focal length of the optical system (20) is equal to or greater than an effective focal length of the optical system (20). The field of view is large, and typically at least 30-40 degrees in one plane.
Abstract:
An optical system (20) comprises a three-mirror anastigmat (22) including a primary mirror (24), a secondary mirror (26), and a tertiary mirror (28) positioned to reflect a beam path (30). An intermediate image (32) is formed on the beam path (30) at an intermediate-image location between the secondary mirror (26) and the tertiary mirror (28). A negative-optical-power field mirror (34) is positioned in the beam path (30) at a field-mirror location subsequent to the intermediate-image location along the beam path (30). The field mirror (34) reflects the intermediate image (32) to the tertiary mirror (28).
Abstract:
An all-reflecting, non-relayed optical system having an aperture stop and an optical axis and configured to provide images of objects. The system includes a positive power primary mirror configured to receive radiation from the objects, a negative power secondary mirror configured to receive the radiation reflected from the primary mirror and a positive power tertiary mirror configured to receive the radiation reflected from the secondary mirror. The system further includes a focal plane configured to receive the radiation reflected from the tertiary mirror and to form an image of the objects. The aperture stop of the optical system is located between the tertiary mirror and the image plane. Accordingly, the image plane may be cold shielded to prevent or reduce radiation reflected from the optical elements that interferes with the desired image.
Abstract:
A laser beam pointing and positioning system includes first and second rotatable diffraction gratings. Each grating deviates a laser beam by a predetermined angle of deviation. The relative rotational position of the gratings is controlled to change the beam steering angle and direction of a laser beam. A maximum beam steering angle of twice the angle of deviation may be achieved in any direction. The diffraction gratings may be etched on transmissive substrates of optical glass, sapphire, silicon (Si), Zinc Selenide (ZnSe), Zinc Sulfide (ZnS), or Germanium (Ge). The substrates may be positioned within rotary elements coupled respectively to electromechanical positional control elements to rotate the gratings.