Abstract:
A nanosilica containing fluid system for shale stabilization in a shale formation. The nanosilica containing fluid system comprising a functionalized nanosilica composition operable to react with shale at the surface of the shale formation to form a barrier on the shale formation. The functionalized nanosilica composition comprising a nanosilica particle, the nanosilica particle having a mean diameter, and a functionalization compound, the functionalization compound appended to the surface of the nanosilica particle. And an aqueous-based fluid, the aqueous-based fluid operable to carry the functionalized nanosilica composition into the shale formation. The functionalization compound is an amino silane. The aqueous-based fluid is selected from the group consisting of water, deionized water, sea water, brine, and combinations thereof.
Abstract:
Provided are systems and method for casing a wellbore of a hydrocarbon well. The casing including disposing a casing print head in a wellbore of a hydrocarbon well, and conducting a downhole casing operation including operating the casing print head to eject casing material to form a casing tubular in the wellbore, and operating the casing print head to eject casing liner material into an annular region located between the casing tubular and a wall of the wellbore to form a casing liner in the annular region, the casing tubular and the casing liner forming a casing of the wellbore.
Abstract:
The present disclosure relates to methods of suspending proppants in a hydraulic fracturing fluid including adding a quantity of precursor nanoparticles including carbon nanotubes supported by metal oxide catalyst nanoparticles to the hydraulic fracturing fluid. The metal oxide catalyst nanoparticles and the hydraulic fracturing fluid are selected such that the metal oxide catalyst nanoparticles are dissolvable in the hydraulic fracturing fluid. The metal oxide catalyst nanoparticles dissolve in the hydraulic fracturing fluid, resulting in an amount of carbon nanotubes dispersed within the hydraulic fracturing fluid. The carbon nanotube dispersion increases the value of at least one of a Newtonian viscosity, a yield point, a plastic viscosity, and a density of the hydraulic fracturing fluid with the dispersed carbon nanotubes versus a similar or equivalent hydraulic fracturing fluid without the carbon nanotube dispersion. The method may further include adding proppants to the hydraulic fracturing fluid.
Abstract:
Provided are systems and methods for forming a casing liner in a wellbore of a hydrocarbon well. The forming including disposing a casing liner print head in an annular region located between a casing pipe disposed in a wellbore of a hydrocarbon well and a wall of the wellbore, conducting a downhole lining operation including operating the casing liner print head to eject casing liner integrated structure material into the annular region to form, in the annular region, a casing liner integrated structure including contiguous voids formed in the casing liner integrated structure material, and depositing a cementitious material into the contiguous voids formed in the casing liner material to form, in the annular region, a casing liner including the casing liner integrated structure material and the cementitious material.
Abstract:
Provided is a wellbore casing liner printing system that includes a casing liner print head adapted to be disposed in an annular region located between a casing pipe disposed in a wellbore of a hydrocarbon well and a wall of the wellbore and adapted to rotate within the annular region and deposit material into the annular region to form a casing liner in the annular region. The casing liner print head including a first set of printing nozzles arranged in series in a radial direction, and a second set of printing nozzles arranged in series in the radial direction and offset from the first set of printing nozzles. The first set of printing nozzles adapted to eject a first casing liner material into the annular region and the second set of printing nozzles adapted to eject a second casing liner material into the annular region to form the casing liner of the first casing liner material and the second casing liner material.
Abstract:
Provide is a cement ink for a cement ink for 3D printing (which also includes additive manufacturing) of 3D cement structures and materials. The cement ink includes an American Petroleum Institute (API) Class G cement, a nano-clay, a superplasticizer, a hydroxy ethyl cellulose, and a defoamer. The nano-clay may be hydrophilic bentonite. The superplasticizer may be a polycarboxylate ether. The defoamer may be 2-ethyl- l-hexanol. Processes for forming the cement ink and printing 3D cement structures using the cement ink are also provided.
Abstract:
Provided are systems and methods for forming a casing liner in a wellbore of a hydrocarbon well. The forming including disposing a casing liner print head in an annular region located between a casing pipe disposed in a wellbore of a hydrocarbon well and a wall of the wellbore, and conducting a downhole lining operation including operating the casing liner print head to eject casing liner material into the annular region to form, in the annular region, a casing liner including elongated voids formed in the casing liner material.