Abstract:
A solar thermal power plant is provided, comprising a solar collection system configured for utilizing incident solar radiation to heat a heat transfer fluid (HTF), and a power block configured for utilizing the heated HTF to generate power. The solar collection system comprises a plurality of pipes for carrying the HTF and being characterized by a first degree of permeability to hydrogen, at least some of the pipes comprising portions exposed to the atmosphere and comprising a membrane made of a material characterized by a second degree of permeability to hydrogen being higher than the first degree of permeability to hydrogen.
Abstract:
A solar collector unit (10) which includes a trough-shaped compound parabolic concentrator (12). The concentrator is formed of two integral side-by-side portions (14), each having a compound parabolic cross-sectional configuration which extends inwardly from a free edge (16) and terminates at a common apex (18), thereby defining a ridge portion extending along the length of the trough-shaped concentrator. The concentrator has a generally omega-shaped cross-sectional configuration. The concentrator also defines a focal region (14', 14'') parallel to the ridge portion. The solar collector unit also includes an elongate receiver construction (22, 24) extending along the length of the concentrator in the focal region, thereby to receive solar energy focused thereat by the concentrator. The elongate receiver construction has an arrangement of parallel, interconnecting conduits for carrying a throughflow of a fluid to be heated. The ridge portion of the concentrator intersects with a tangential plane (28) common to at least a pair of the conduits, thereby substantially preventing gap loss thereat.
Abstract:
This invention relates to a heat receiver tube for absorbing solar energy and for transferring absorbed solar energy to a heat transfer fluid which can be located inside a core tube of the heat receiver tube. A first part of the core tube surface is covered by a first solar energy absorptive coating for absorbing radiation of a first certain spectrum of the sunlight. A second part of the core tube surface is covered by a second solar energy absorptive coating for absorbing radiation of a second certain spectrum of the sunlight. An emission radiation inhibiting coating for inhibiting an emissivity for infrared radiation is deposited on the second solar energy absorptive coating such that the second solar energy absorptive coating is arranged between the second partial core tube surface and the emission radiation inhibiting coating. The first solar energy absorptive coating forms a first partial heat receiver tube surface and the emission radiation inhibiting coating forms a second partial heat receiver tube surface. Also provided is a parabolic trough collector with at least one heat receiver tube which is arranged in a focal line of a parabolic mirror. The first partial heat receiver tube surface and the sunlight reflecting surface of the mirror are arranged face to face whereas the second partial heat receiver tube surface is averted to the reflecting surface of the mirror.
Abstract:
There is provided a pipe in a solar thermal power plant, the pipe comprising an inner tube configured for carrying a heated heat transfer fluid, an outer tube surrounding the inner tube, wherein the space between the inner and outer tube is evacuated, and a getter restraint structure configured for maintaining getters in a predetermined position. The getter restraint structure is in contact with the outer tube and otherwise entirely free of contact with the inner tube and/or is in thermal isolation from the inner tube.
Abstract:
The invention relates to a heat receiver tube (1) for absorbing solar energy, wherein the receiver tube (1) comprises a core tube (10) having at least one first partial heat receiver tube surface (11), at least one second partial heat receiver tube surface (12) and at least one further partial heat receiver tube surface (13), wherein the first partial heat receiver tube surface (11) is formed by a first solar energy absorptive coating (111) deposited on a first partial core tube surface (101) of the core tube (10) for absorbing radiation of a first spectrum of the sunlight, wherein the second partial heat receiver tube surface (12) is formed by at least one emission radiation inhibiting coating (14) deposited on a second core tube surface (102) of the core tube (10), wherein the further partial heat receiver tube surface (13) is formed by at least one further solar energy absorptive coating (131) deposited on a further partial core tube surface (103) of the core tube (10) for absorbing radiation (1311) of a further spectrum of the sunlight and wherein the further partial heat receiver tube surface (13) is arranged in a radiation window (1211) of the second partial heat receiver tube surface (12) such that the radiation (1311) can impinge the further partial heat receiver tube surface (13).
Abstract:
This invention relates a heat receiver tube for absorbing solar energy and for transferring the absorbed solar energy to a heat transfer fluid which can be located inside the heat receiver tube. The heat receiver tube comprises at least one first partial surface, which is covered by a solar energy absorptive coating for absorbing an absorption radiation of a certain spectrum of the sunlight, and at least one second partial surface, which is substantially uncovered by the absorbing coating. Also provided is a parabolic trough collector comprising at least one parabolic mirror having a sunlight reflecting surface for concentrating sunlight in a focal line of the parabolic mirror and at least one heat receiver tube which is arranged in the focal line of the parabolic mirror, wherein the heat receiver tube is arranged in the focal line such that the first partial surface with the solar absorptive coating is at least partially located opposite to the sunlight reflecting surface and the second partial surface at least partially averted to the sunlight reflecting surface. The first partial surface with the solar absorptive coating and the sunlight reflecting surface of the mirror are arranged face to face. The parabolic trough collector is used in a solar power plant for converting solar energy into electrical energy.