Abstract:
A self-lubricated actuator for a rotor blade flap of a helicopter having a housing; a motor having a shaft disposed in a bearing is provided. The actuator further has an output rod and a mechanism operatively associated with the motor and the output rod to transmit movement from the motor to the output rod. The housing includes a lubrication medium capable of substantially immersing the bearing, the motor shaft and the mechanism during operation.
Abstract:
A helicopter rotor blade having a blade body that defines a confined space and a control flap that is secured to the blade body that moves through a range of motion. An electric machine is secured inside of the rotor blade body that rotates a motor shaft. A transmission device is secured to the motor shaft and the control flap that transfers rotary motion of the motor shaft to the control flap to generate movement of the control flap through its range of motion. The transmission device remains substantially within the confined space throughout the range of motion.
Abstract:
A helicopter rotor blade that has a blade body and a control flap secured to the blade body. The rotor blade has a first primary mover capable of generating a first linear motion that is sufficient to generate a high amplitude, low frequency motion of the control flap; and a second primary mover capable of generating a second linear motion that is sufficient to generate a small amplitude, high frequency motion of the control flap. Further, the rotor blade has a coupling transmission for combining the first linear motion with the second linear motion that generates a cumulative linear motion; and a small transmission device that causes the cumulative linear motion to rotate the control flap.
Abstract:
According to one aspect, a lubricant level sensing system for an actuator is provided. The lubricant level sensing system includes a pressure port in an outer housing of the actuator, a pressure sensor, and a pathway from the pressure port to the pressure sensor. The pathway establishes fluid communication between the pressure sensor and a free volume of an internal cavity of the outer housing relative to a lubricant level in the internal cavity such that the pressure sensor detects a pressure of the free volume used to derive the lubricant level.
Abstract:
A rotorcraft is provided and includes a fuselage. The fuselage includes drag generating portions, a main rotor assembly and an auxiliary propulsor having an expected propulsion efficiency. The auxiliary propulsor is disposed to ingest boundary layer flows and in wake regions associated with the drag generating portions and is provided with a corresponding increase in the expected propulsion efficiency thereof.
Abstract:
A rotor blade deflection sensing system including a rotor blade having a first surface, a second surface, a third surface and a fourth surface. At least two fiber optic sensor arrays are mounted to the rotor blade. At least one of the at least two fiber optic sensor arrays is mounted to one of the first surface, the second surface, the third surface and the fourth surface and another of the at least two fiber optic sensor arrays being mounted to another of the first surface, a second surface, a third surface and a fourth surface. A controller is operatively connected to the at least two fiber optic sensor arrays. The controller determines one or more of a flapwise and an edgewise displacement based on inputs from the at least two fiber optic sensor arrays.
Abstract:
An aircraft is provided and includes a fuselage including a top and a tail, a main rotor apparatus disposed at the top of the fuselage, which rotates one or more rotors to generate lift, and an active flow control (AFC) system. The AFC system includes plasma actuators configured to generate plasma at a location adjacent to the main rotor apparatus and/or at the tail of the fuselage.
Abstract:
A boundary layer ingesting (BLI) blade having a span is provided and includes a root section connectable to a hub, a tip section disposable at a distance from the hub and having a pitch and a body extending in a spanwise dimension from the root section to the tip section. The root section has a local pitch from the root section to about a 70% span location, which is less than the pitch at the tip section, to thereby reduce local angles of attack in a boundary layer region defined in and around the root section.