Abstract:
A lighting system and method for generating an output light beam representative of a target natural light are provided. The lighting system includes a plurality of solid-state light emitters each emitting a light sub-beam having an individual spectrum. The individual spectra of the solid-state light emitters collectively cover a visible portion of the natural light spectral profile and exclude infrared and ultraviolet components. The lighting system further includes a combining assembly combining the light sub-beams into the output light beam. A control module controls an intensity of the light sub-beam from each of the solid-state light emitters such that the resulting combined spectral profile of the output light beam is representative of a natural light spectral profile of the target natural light over its visible portion.
Abstract:
A method and system of supplementing a main illuminating light with a supplementary illuminating light using a plurality of solid-state light emitters to illuminate a space according to a target illumination spectrum are provided. The method can include determining or receiving a reference illumination spectrum associated with the main illuminating light. The method can also include determining a spectral deviation between the reference illumination spectrum and the target illumination spectrum. The method can further include controlling the solid-state light emitters to emit respective emitter beams forming the supplementary illuminating light and illuminating the space along with the main illuminating light, the emitter beams having respective emitter spectra together defining a supplementary illumination spectrum of the supplementary illuminating light. The controlling can include adjusting the emitter spectra to match the supplementary illumination spectrum to the spectral deviation and illuminate the space according to the target illumination spectrum.
Abstract:
Methods and systems are provided for generating a dynamic lighting scenario over a scenario timeline using solid-state light emitters. The method can include a step of providing a plurality of lighting reference points in the dynamic lighting scenario, each lighting reference point having an associated reference illumination state to be achieved at a corresponding reference moment of the scenario timeline. The method can also include a step of determining a plurality of sets of reference control parameters for the solid-state light emitters, each set of reference control parameters for producing the reference illumination state associated to a corresponding one of the plurality of lighting reference points. The method can also include driving the solid-state light emitters based on the plurality of reference control parameters to generate the dynamic lighting scenario.